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SUMMARY 
 
 
 

Genetic engineering has been employed in the design of novel protein 

polymers composed of repetitive amino acid sequences or peptide blocks whose 

structural complexity imparts distinct mechanical, chemical or biological properties.  

Recently, we have reported the synthesis of elastin-mimetic multiblock copolymer 

composed of identical endblocks derived from self-associating, hydrophobic 

sequences that display plastic-like mechanical responses (Ile-Pro-Ala-Val-Gly), 

separated by a central block that is both hydrophilic and elastomeric (Val-Pro-Gly-

Glu-Gly).  Significantly, these multiblock systems afford the ability to form physical or 

virtual crosslinked networks through the self-association of chemically similar domains 

under physiologically relevant conditions (pH 7.4, 37°C).   

Recombinant synthesis of elastin-mimetic proteins has been employed for 

several decades, however, long-term biocompatibility and biostability of such proteins 

was not fully defined.  We present virtually crosslinked elastin-mimetic proteins which 

exhibit exceptional biocompatibility and long-term biostability over a period of at least 

seven months.  This report is the first evidence of a non-chemically or ionically 

crosslinked system that exhibits long-term in vivo stability.  

Although, physically crosslinked protein-based materials possess a number of 

advantages over their chemically crosslinked counterparts, physical crosslinks and 

the related domains so formed may be deformed or damaged at applied stresses 

lower than those required to disrupt covalent crosslinks.  In this regard, we have 

synthesized a new class of recombinant elastin-mimetic triblock copolymer capable of 

both physical and chemical crosslinking.  We have demonstrated that chemical 

crosslinking provides an independent mechanism for control of protein mechanical 
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responses.  Specifically, elastic modulus was enhanced and creep strain reduced 

through the addition of chemical crosslinking sites.   

A number of reports have described the design of synthetic genes, which 

encode elastin-like proteins for bacterial expression in Escherichia coli.  Although 

advantages with this expression system exist, significant limitations including the lack 

of eukaryotic post-translational systems, the tendency to sequester mammalian 

proteins into inclusion bodies, difficult purification protocols, and endotoxin 

contamination have been noted.  We demonstrate the expression of a recombinant 

elastin-mimetic protein from P. pastoris.  A novel synthetic strategy, monomer library 

concatamerization, was utilized in designing non-repetitive elastin genes for highly 

repetitive protein sequences.  It is likely that this strategy will be useful for creating 

large, repetitive genes for a variety of expression systems in order to more closely 

approach the genetic diversity inherent to native DNA sequences.    

All told, elastin-based protein polymers are a promising class of material 

characterized by high degree of biocompatibility, excellent biostability, and a tunable 

range of mechanical properties from plastic to elastic.  A variety of options facilitate 

the processing of these biopolymers into chemically crosslinked or non-crosslinked 

gels, films, or nanofibers for any of a number of implant applications including 

structural components of artificial organs and engineered living tissues, carriers for 

controlled drug release, or biocompatible surface coatings. 
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CHAPTER I 

INTRODUCTION 
 
 

1.1 CENTRAL HYPOTHESIS AND SPECIFIC AIMS 

The central hypothesis encompassing the work described in this manuscript 

states that recombinant elastin proteins can be engineered to exhibit enhanced 

biostability and mechanical properties that closely match those of native elastin thus 

providing a rational approach for generating the elastin component of a tissue 

engineered vascular graft.     

The Central Hypothesis was investigated by pursuing the following specific aims.  

The goal of Specific Aim 1 was to synthesize recombinant elastin-mimetic protein 

polymers that have the capacity to form both physical and chemical crosslinks.  We 

hypothesized that using genetic engineering approaches elastin-mimetic materials can 

be produced with controlled elastomeric properties and enhanced biostability through 

appropriate choice of recombinant peptide sequences that facilitate both chemical and 

physical crosslink formation.  For this aim, two novel elastin-mimetic triblock copolymers 

were engineered, LysB10 and R4.  These results are presented in Chapter 2. 

 The goal of Specific Aim 2 was to characterize the mechanical properties of 

crosslinkable elastin-mimetic triblock copolymers.  We anticipated that the presence of 

chemical and physical crosslinks would act synergistically to improve the modulus of 

elasticity and resilience of elastin films.  Target property endpoints for crosslinkable 

elastin-mimetic triblock copolymers have been defined as exhibiting a modulus of 

elasticity of 0.3-1.3 MPa and greater than 80% resilience over a strain of 30-45%.  

Additionally, we hypothesized that creep responses of elastin films can be improved with 

the incorporation of chemical crosslinks.  Target property endpoints for crosslinkable 
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elastin-mimetic triblock copolymers have been defined as exhibiting less than 10% creep 

above physiologic stresses (45 kPa).  Both LysB10 and R4 proteins were evaluated as 

water-cast films with and without glutaraldehyde (GTA) crosslinking.  Uniaxial stress-

strain responses and creep responses were evaluated.  These results are presented in 

Chapter 2.   

 The goal of Specific Aim 3 was to define the short- and long-term 

biocompatibility and biostability of crosslinkable elastin-mimetic triblock copolymers after 

in vivo implantation.  We hypothesized that elastin-mimetic crosslinked hydrogels would 

exhibit sufficient biocompatibility and enhanced biostability to be used in a vascular 

construct.  Biocompatibility was examined through histological evaluation of the fibrous 

capsule surrounding implanted materials as well as florescent activated cell sorting 

(FACS) analysis of number and type of inflammatory cells present at the implant site.  

These results are presented in Chapters 2 and 3.  Biostability was monitored using 

magnetic resonance imaging (MRI) over a period of seven months.  The methodology 

for assessing biostability was developed using a model protein system and these results 

are presented in Chapter 3. 

 

1.2 MOTIVATION 

The work presented herein was motivated by previous investigations in our 

laboratory and others.  In particular, we have developed a class of recombinant elastin-

mimetic proteins which have the capacity to form physically or virtually crosslinked 

systems [1-3].  These self-assembling triblock elastin copolymers have demonstrated 

that through selective engineering of block structure, a wide range of mechanical 

responses can be produced.  In recent studies we have demonstrated that relatively 

limited changes in chemistry, including midblock size or amino acid sequence, provide 

an additional mechanism for tailoring protein elasticity, resilience, tensile strength, or 
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strain at failure [1, 4, 5].  Specifically, an elastin-mimetic protein was designed with 

midblock and endblocks that were approximately equal in size and displayed significant 

increases in both tensile strength and creep resistance as compared to an elastin-

mimetic protein with endblocks approximately half the size of the midblock [5, 6].  We 

have demonstrated these proteins can find application as gels, films and fiber networks.   

We have demonstrated elastin-mimetic triblock coplymers can be used to 

generate a non-thrombogenic hydrogel coating on the luminal surface of an ePTFE 

vascular prosthesis, and display excellent short-term blood contacting properties of this 

material [7].  Extensive biocompatibility characterization is necessary to assess the 

behavior of these proteins in vivo.  Using a model protein which has been extensively 

characterized in vitro, the methods for assessing biocompatibility and biostability have 

been developed as presented in Chapter 3.  

Additionally, we have explored alternative expression systems for the expression 

of recombinant elastin-mimetic proteins as a method for simplifying purification 

protocols.  In particular, through genetic engineering we have developed elastin-mimetic 

proteins for expression in the methylotrophic yeast, Pichia pastoris.  Of note, we have 

developed a novel genetic engineering strategy to create repetitive elastin polypeptides 

with non-repetitive nucleotide sequences using a concatamerization strategy employing 

random ligation of a library of monomer repeat units.  These results are presented in 

Chapter 4. 

Collectively, these studies demonstrate the need for the development of 

recombinant elastin proteins capable of both physical and chemical crosslinking and 

characterization of their mechanical behaviors, biocompatibility, and biostability. 
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1.3 RATIONAL 

According to the American Heart Association Heart Disease and Stroke 

Statistics-2008 Updates, cardiovascular disease (CVD) is unmistakably a growing 

concern with statistics indicating approximately 500,000 procedures for coronary bypass 

surgery performed in over 250,000 patients each year.  Since 1900 CVD has been the 

leading cause of death in the United States, killing nearly 2,400 American each day, or 

one person every 37 seconds.  Specifically, coronary artery disease accounts for 54% of 

the CVD deaths annually [8]. 

Consequently, the need for a small diameter arterial prosthesis is apparent.  

Although employing polymers such as polytetrafluorethylene have been successful in 

the development of large diameter vascular grafts, the fabrication of a durable small 

diameter prosthesis remains an elusive goal. Biological reactions at the tissue material 

interface resulting from mechanical or compliance mismatch between native artery and 

the arterial replacement material lead to their ultimate failure.  Presently, autologous 

vessels (i.e. saphenous veins and internal mammary arteries) are choice vascular 

replacements, though even these vessels are not sufficient for long term patency.  

Significantly, of the 600,000 coronary bypass operations performed annually, 10-20% of 

patients will require a second operation within 10 years [9]. 

In response to these limitations, strategies to mimic some or all of the 

characteristics of the arterial wall have been pursued.  Current tissue engineering 

strategies provide an opportunity to circumvent maladaptive responses, though 

adequate replacements could be decades away.  Alternatively, the generation of protein 

polymers that mimic native structural proteins offers a replacement strategy to develop a 

vascular graft with clinical performance results that match or exceed those of a native 

vessel.  The reformulation of these proteins into nanofiber networks provides an 

opportunity to optimize the mechanical properties of an arterial bioprosthesis, as well as 
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other biologically related characteristics, thus creating an optimal vascular replacement 

material.  

The long-term goal encompassing this work can be divided into three areas:  (i) to 

synthesize a family of recombinant elastin-mimetic proteins capable of physical and 

chemical crosslinking  (ii) to define their structure-property relationships; and (iii) to 

characterize the capacity of these artificial proteins for the generation of biocompatible 

small diameter blood vessel substitutes with mechanical properties that closely match 

those of native blood vessels.   We anticipate that utilizing recombinant proteins based 

on consideration of the structural properties of the native matrix will lead to the creation 

of vascular conduits with better defined mechanical properties and enhanced 

biodegradation with improved clinical performance characteristics.   

 

1.4 BACKGROUND 

Current pursuits in the discipline of biomedicine, including artificial organs and 

engineered living tissues, are dependent on the ability to generate novel materials, 

fabricate or assemble materials into appropriate 2-D or 3-D structures, and to precisely 

tailor material-related properties in order to achieve a desired clinical response [10].  To 

that end, of profound importance is the development of artificial extracellular matrices 

(ECM). These structures are integral to the fashioning of microenvironments that are 

engineered for ideal mechanical and biological performance.  It is likely this design will 

require the mimicry of many, if not all, morphological or physiologic features of native 

tissues.  Decades of research have indeed demonstrated that as our ability to control the 

physical and biological properties of scaffolding materials improves, the quality of the 

tissues thus formed is enhanced.   

More specifically, molecular and supramolecular organization of Type I collagen 

and elastin fiber assemblies establishes and important paradigm for the design in the 
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development of novel scaffolds.  In the body, both tissues and organs are organized into 

3-D structures, each having specific architectures, directly dependent upon its biological 

function.  This architecture is believed to foster cellular ingrowth and proliferation by 

providing appropriate channels for mass transport and spatial cellular organization, thus 

directing new tissue formation.   

The primary focus of our investigation is to engineer a material for vascular graft 

replacements.  However, the strategies employed and materials thus generated can be 

utilized in biosynthetic design of many different artificial organs and tissues. 

 

1.4.1  Current strategies in the design of an engineered vascular graft 

Development of a small diameter vascular replacement for coronary bypass 

procedures has been described as the ‘Holy Grail’ for cardiovascular tissue engineering 

[11].  Developing an adequate replacement material has the potential to transform the 

treatment of coronary heart disease.  It is recognized that adverse events leading to 

vascular graft failure are related to destructive biological reactions at the blood-material 

and tissue-material interface.  Specifically, synthetic materials which have been 

successfully applied to large diameter replacements fail when applied to the small 

diameter with insufficient patency rates limited by thrombosis and compliance mismatch 

[12-16].  Over the past three decades, vascular graft design has adapted more of a 

tissue engineering approach with new graft design inspired by characteristics of the 

arterial wall. 

Earliest efforts endeavored to functionalize synthetic graft prostheses with a 

luminal layer of endothelial cells.  Though this strategy has several limitation; issues with 

cell sourcing, cell retention, and procoagulant tendencies, it has found success as larger 

peripheral artery replacements [17-20].  The inherent limitations of synthetic polymers 
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have motivated investigation to take a completely biological approach to the 

development of vascular grafts.  Early work explored collagen gel technology in which 

constructs were developed consisting of cell populated collagen gels [21].  This research 

has served as the foundation for subsequent innovation.  Extensions of this technology 

have incrementally enhanced the material integrity of the construct, through strategies to 

increase fiber alignment of the collagen [22-24], strength via mechanical conditioning 

[25, 26], crosslinking [27], and others, yet constructs exhibit inferior mechanical 

properties as compared to native vessels.  Other approaches have utilized native 

vascular cells in the production of ‘cell secreted scaffolds’ [28-31].  Though these tissue 

engineering strategies have reported promising results, some even progressing from 

bench to human studies [31, 32], each poses unique challenges.  Specifically, the 

duration of incubation time, immunologic challenges associated with the use of 

allogeneic cells, and suboptimal compliance has limited the application of these 

strategies to create a clinically applicable small diameter replacement.   

Decellularized allo- and xenogeneic tissue have alternatively been investigated 

as materials for vascular grafts.  These decellularized natural matrices contain the intact 

extracellular matrix and associated attachment proteins and have been used to produce 

structures with increase degradation resistance, decreased thromobgenicity, and 

decreased inflammatory reactions.  Human umbilical vein, bovine procine carotid artery 

and small intestine submucosa, chemically crosslinked using gluteraldehyde, have been 

employed in clinical application though their use has been limited due to suboptimal 

patency rates via dilation and aneurysm formation [33-40].  

Protein fiber spinning has recently been investigated for the development of 

tubular constructs for vascular applications.  It has been postulated that the versatility of 

structural proteins as a scaffold will be significantly enhanced when reformulated into 

fiber networks.  In this regard, electrospinning has been investigated as a mechanism for 
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generating fibers with diameters < 1 µm.  Briefly, the electrospinning technique relies on 

electrostatic forces to produce sub-micron diameter fibers from protein solutions.  A high 

voltage is applied to a spinneret while a protein solution is slowly being pumped through 

which induces evenly dispersed charges in a pendent drop at the tip of the spinneret, 

relaxing the fluid surface.  This surface charge and the external Coulombic forces from 

the electric field combine to form a tangential stress which results in the drop becoming 

distorted into a shape referred to as a Taylor cone.   At a threshold value, the electric 

field strength will overcome that of surface tension and the protein solution is ejected as 

a charged jet from the spinneret tip.  As the jet travels to the grounded collector it 

undergoes stretching and whipping phenomena which reduces the diameter of this fiber.  

It is then collected, usually in a random orientation, on the grounded collector, creating a 

nonwoven fiber networks.  Accordingly, a tubular construct can be fabricated using a 

rotating mandrel as a collector.  Materials such as soluable elastin, Type I and III 

collagen, collagen-elastin-PLGA blends and recombinant elastin-mimetic materials have 

fabricated into electrospun fiber conduits [1, 41-46].  Reformulating proteins into fiber 

networks provides an additional level of control over the properties of the system.  

Specifically, studies have indicated electrospun fabrics composed of small diameter 

fibers (≤ 1um) demonstrated decreased porosity, increased fiber density, increased 

mechanical strength, as well as an optimized biological environment for promoting 

endothelial cell adhesion as compared to larger diameter fibers (7um) [42, 47]. 

 

1.4.2 The aortic media, a model system for the design of a vascular graft prosthesis 

The native blood vessel is composed of three main structural layers containing 

unique cell and matrix components. The inner most layer of the blood vessel is the 

tunica intima which is composed of a single layer of endothelial cells with an underlying 
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basement membrane consisting of Type IV collagen, glycosaminoglycans, elastin and 

laminin. The outermost layer of the blood vessel, the tunica adventitia, forms a 

connective sheath around the vessel consisting of Type I and Type III collagen, elastin 

and fibroblasts. The adventitia functions to stabilize and anchor the blood vessel and 

maintain longitudinal tension.  The middle layer of the native blood vessel is the tunica 

media which is composed of concentric sheets of elastic lamellar units each composed 

of smooth muscle cells within a fibrillar matrix of Type I and Type III collagen, elastin and 

proteoglycans. The inherent elasticity of blood vessels arises from the structure of the 

medial layer.  Elastin and collagen function in a concerted action in response to imposed 

deformations.  Elastin is primarily responsible for distensibility and elastic recovery of the 

vessel in the low-strain regime while collagen responds by limiting deformation during 

excessive strain [48-52].  The elastin protein network appears to be integral to 

mechanically match the native blood vessel and for the prevention of intimal hyperplasia 

and potential graft failure.  Additionally, the pores of the elastic lamina are important for 

the exchange of nutrients and metabolites.  Thus, the lamellar unit of the aortic media 

serves as a foundation in the design of a vascular graft prosthetic [53-55].     

 

 
1.4.3 Native elastin, an introduction 

Native elastin is a highly insoluable matrix protein that is responsible for providing 

extensibility and resilience to most tissues of the body.  Insoluable elastin has a 70 year 

half-life making it one of the most stable proteins discovered [56].  In the vascular 

system, elastin fiber networks appear in large densities (over 50%) and function to 

provide resilience to the artery to absorb dynamic systolic stresses of the cardiac cycle 

and to release energy in the form of blood pressure during diastole [57]. Therefore, 

elastin networks maximize the durability of tissues that are loaded by repetitive forces by 
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minimizing the conversion of mechanical energy to heat which would ultimately result in 

tissue damage [52].  In addition to its structural role, elastin creates an environment 

which promotes proper cell function.  Specifically within the vascular system, elastin 

regulates smooth muscle cell phenotype and proliferation, and in this way is responsible 

for stabilizing arterial structure [57-60]. 

 

1.4.4 Biochemistry of native elastin 

Human elastin is synthesized as a 72 kDa soluble precursor, tropoelastin.  The 

distinctive composition of tropoelastin affords unique physical properties of this structural 

protein.  Tropoelastin is rich in glycine (33%), proline (10-13%), and other hydrophobic 

residues (44%) rendering elastin an extremely hydrophobic protein [61].   Tropoelastin 

contains distinct crosslinking and hydrophobic domains.  Crosslinking domains are 

alanine rich, containing pairs of lysine residues facilitating intermolecular crosslinking.  

Specifically, lysine residues are separated by either two or three alanine residues (eg. 

Ala-Ala-Ala-Lys-Ala-Ala-Lys-Ala-Ala) allowing for retention of an α-helical conformation 

in this region.  The sequence within the crosslinking domains appears to be conserved 

as a consequence of the conformational constraints of crosslinking [62].  Alternatively, 

the hydrophobic domains within tropoelastin are composed of three-quarters of valine, 

glycine, proline, and alanine which occur in repeat units like Gly-Val-Gly-Val-Pro, Gly-

Val-Pro-Gly-Val, and Gly-Val-Gly-Val-Ala-Pro.  The total size of the protein polymer, 

750-800 residues, is highly conserved among species, however, investigations have 

elucidated that precise sequence and size of this region are not critical for appropriate 

function [62]. 

 

1.4.5 Coacervation phenomena in native elastin and recombinant elastin proteins 
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 Coacervation is a self assembly process thought to align tropoelastin molecules 

in preparation for intermolecular crosslinking [63-65].  At ambient temperatures, 

tropoelastin is soluble in aqueous solutions.  However, as the temperature is raised, the 

molecules begin to aggregate through hydrophobic interactions.  Coacervation is a lower 

critical solution temperature (LCST) phenomenon in which the protein forms a more 

ordered system upon increasing temperature.  The same phenomena has been 

observed with recombinant elastin proteins where precise control over the temperature 

at which coacervation occurs has been correlated to amino acid sequence [66, 67].  

Recombinant elastin proteins which lack hydrophobic domains do not have the ability to 

coacervate [68]. 

 

 
1.4.6 Elastin fiber assembly 
 

Elastin fibers appear to exist as two morphologically different components, a 

highly isotropic amorphous elastin constituent within an organized microfibrilar scaffold 

primarily composed of fibrillin [69, 70].  Understanding of the complex mechanism of 

fiber assembly in native elastin is limited.  Fiber assembly appears to take place in the 

extracellular space in proximity to the cell membrane where microfibrils appear first, 

grouped in small bundles. Tropoelastin, synthesized by smooth muscle cells, is secreted 

within each fiber bundle.  Tropoelastin exhibits the ability to self-assemble under 

physiological conditions through coacervation.  It is likely that this phenomena is 

responsible for the alignment of tropoelastin in preparation of intermolecular crosslinking 

[62-65].  Intermolecular crosslinking occurs between four lysine residues from two 

tropoelastin molecules.  Briefly, crosslinks are formed through the deamination of the ε-

amino group of the lysine side chains by the enzyme lysyl oxidase.  The reaction occurs 

in two ways:  the reactive aldehyde residue condenses with a second aldehyde residue 
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to form an allysine aldol or it reacts with a lysine residue to form lysinonorleucine.  These 

two precursors condense to form desmosine and isodesmosine crosslinks [71].  

Crosslinking appears to take place every 65-70 residues [72].   

 
 
1.4.7  Biosynthetic approach to the development of an engineered vascular graft 

Allogeneic and xenogeneic strategies indicate native fiber networks can be used 

to fabricate a vascular graft prosthetic, though the inability to tailor matrix composition 

and content, fiber size and architecture, limits the applicability of these materials. As a 

result, strategies to design a prosthesis with precisely defined mechanical and biological 

properties has been pursued via a ‘ground-up’ design.   Recent developments in 

recombinant protein engineering now offer the opportunity to construct new proteins with 

near absolute control over molecular architecture [73-76].   Employing biosynthetic 

routes to the design of structural proteins for vascular prosthetics afford the ability to 

modulate material properties at the level of the primary amino acid sequence, thus 

affording the capability to engineer recombinant proteins to meet physiologic 

requirements.   Additionally, this strategy enables the elucidation of structure-property 

relationships and ultimately, control over these properties.  Currently, structural proteins 

have been generated in this way consisting of sequentially repeated amino acid blocks 

derived from analysis of native protein molecular structure [77, 78].  This strategy not 

only allows for control of sequence and size, it also facilitates incorporation of additional 

functional groups, in particular, the placement of crosslinks at well defined intervals 

along the peptide chain allowing for the additional control over material properties of the 

protein.  Thus, recombinant proteins that mimic structural matrix proteins can be 

engineered with a precisely tailored design to modulate tensile strength, elastic modulus, 

viscoelasticity, and in vivo stability, as well as desired host response.  
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1.4.7 Elastin-Mimetic Proteins 

Limitations to the use of elastin in biomedical and tissue engineering applications 

are a consequence of its intrinsic insolubility and inability to be processed.  But through 

the structural characterization of the hydrophobic domains, the ability to base synthetic 

protein polymers on native elastin sequences is feasible.  The pioneering work of Dan 

W. Urry elucidated the elastomeric pentapeptide repeat, VPGVG, from human elastin 

which now serves as the basic sequence extensively investigated by both chemical 

methodologies and recombinant technology [79, 80].  This repeat unit within found the 

hydrophobic domain of human elastin is responsible for resultant elastic properties.  

Additionally, this domain is responsible for facilitating fiber formation through 

coacervation phenomena, behaviors consistent with native elastin.  Spectroscopic 

analysis has revealed that native elastin, and likewise, protein polymers containing this 

repeat, exhibit β-turns and helical β-spiral conformations and display an inverse 

temperature transition defined by the generation of a more ordered system upon 

increasing temperature.  This loss of entropy is a consequence of protein folding into β-

spiral conformation and the subsequent reorientation of water from the elastin chain [81]. 

Studies have indicated that the amino acid in the fourth (X) position (VPGXG) 

modulates the coacervation temperature with more polar amino acids increasing 

transition temperature [66, 67, 82].  As long as glycine and proline residues are 

preserved the structure and function of elastin is maintained [83].  This discovery has led 

to the generation of recombinant elastin analogs designed for biomedical applications.  

For instance, recombinant techniques have been employed to design amphiphilic elastin 

protein polymers consisting of hydrophobic and hydrophilic domains.  Through precise 

sequence design and control of processing conditions, these elastin analogs exhibit a 

wide range of properties advantageous for biomedical applications, as micelles or 

physically crosslinked films [2-5, 84]. Additionally, groups have incorporated cell binding 
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domains, RGD or REDV, into elastin sequences to functionalize elastin matrix 

components for endothelial cell attachment [85-87].  Furthermore, incorporation of 

reactive lysine residues into recombinant elastin design provides the ε-amino moiety of 

lysine for crosslinking using a variety of approaches. Crosslinking of synthetic elastin-

mimetic protein polymers has been investigated using solution phase systems; either 

gamma irradiation [82, 88-90], chemical [91-102] , or enzymatic based approaches 

[100], as well as solid state photocrosslinking [103].   

 

1.5  SIGNIFICANCE OF PROPOSED RESEARCH 

It is proposed that employing a biosynthetic strategy, elastin-mimetic protein 

polymers can be designed to facilitate both covalent and physical crosslink formation 

thus enhancing static and dynamic material behavior.  Specifically, it is hypothesized 

that these protein polymers will exhibit improved compliance, resilience, creep, and 

biostability as compared to allogeneic or xenogeneic tissue.  Additionally, these proteins 

may be reformulated into gels, films or nano-fiber networks.  Significantly, this strategy 

can be integrated into schemes which are ultimately driven either by a desire to generate 

a cell containing arterial construct or a non-thrombogenic acellular conduit.
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CHAPTER 2 

Elastin-mimetic protein polymers capable of physical and chemical crosslinking 

 

2.1 INTRODUCTION 
 

Genetic engineering provides a facile route for the design of novel protein 

polymers composed of repetitive amino acid sequences or peptide blocks whose 

structural complexity imparts distinct mechanical, chemical or biological properties.  To 

date, the majority of recombinant multiblock protein polymers have been designed with 

relatively short block sequences that limit structural polymorphism.  As a consequence, 

opportunities to access diverse polymer morphologies are limited and the potential to 

tune a wide range of functional responses reduced [74, 104].  Recently, we have 

reported a new class of elastin-mimetic multiblock copolymer composed of identical 

endblocks derived from self-associating, hydrophobic sequences that display plastic-like 

mechanical responses (Ile-Pro-Ala-Val-Gly), separated by a central block that is both 

hydrophilic and elastomeric (Val-Pro-Gly-Glu-Gly) [1, 2].  Block sizes, typically, exceed 

35 kDa, which has allowed us to explore the production of protein-based materials that 

are structurally polymorphic [1-5, 84]. 

 Significantly, multiblock systems afford the ability to form physical or virtual 

crosslinked networks through the self-association of chemically similar domains.  In the 

case of elastin-mimetic proteins [1-5, 84], repeat peptide sequences of self-associating 

blocks are chosen such that coacervation or phase separation of these domains occurs 

in water under physiologically relevant conditions (pH 7.4, 37°C), which maximizes 

hydrophobic interactions that drive self-assembly.  In turn, the sequence of the non-

crosslinking domain is selected in a manner that precludes coacervation.  This typically 

has required the incorporation of hydrophilic residues in the fourth position of the 

pentapeptide repeat sequence (Val-Pro-Gly-Xaa-Gly), such as glutamic acid, which 
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limits the tendency for block aggregation.   Physically crosslinked protein-based 

materials possess a number of advantages over their chemically crosslinked 

counterparts, including ease of processability, the ability to avoid the addition or removal 

of reagents or unreacted intermediates needed for chemical crosslinking, and the 

capacity to incorporate biologically or chemically active agents or cells that might 

otherwise be sensitive to covalent crosslinking schemes.  Moreover, if blocks are of 

sufficient size and chemical diversity the potential to access diverse polymer 

morphologies exists.  This provides the capacity to tune a wide range of functional 

responses, such as mechanical behavior, permeability or drug elution characteristics, as 

well as the potential to design templated materials [74, 86, 91].  Notwithstanding these 

desirable features, physical crosslinks and the related domains so formed may be 

deformed or damaged at applied stresses lower than those required to disrupt covalent 

crosslinks.   

Native elastin is enzymatically crosslinked upon proper alignment of two pairs of 

lysine residues between adjacent tropoelastin chains with formation of desmosine or 

isodesmosine linkages [105, 106].  Likewise, most recombinant elastin analogues that 

have been designed to date have relied on crosslinking through available amino groups, 

albeit with most reports describing the use of chemical crosslinkers, including 

isocyanates, NHS-esters, phosphines, aldehydes, or genipin [91-102].  In this regard, we 

have previously reported the design of a synthetic elastin sequence, (Val-Pro-Gly-Val-

Gly)4(Val-Pro-Gly-Lys-Gly), in which lysine residues were chemically crosslinked using 

bis(sulfosuccinimidyl) suberate and disuccinimidyl suberate [99].  Subsequent studies 

have reported the application of transglutaminase or lysyl oxidase for enzymatic 

crosslinking [107].  In addition, we have also explored solid-state crosslinking of 

recombinant elastin-mimetic proteins using both UV and visible light activated 

photoinitiators [103].  In tropoelastin, lysine residues are often interspersed among 
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alanine repeats (eg. Ala-Ala-Ala-Lys-Ala-Ala-Lys-Ala-Ala), which has suggested that 

self-association of alanine-rich sequences facilitates crosslinking [108, 109].  Several 

elastin-like proteins have been designed in similar manner [86, 91, 110].  

The capacity of chemical crosslinks to provide an independent mechanism for 

control of protein mechanical responses and biostability is well established.  However, in 

this report we postulated that by chemically locking a multiblock protein assembly in 

place, functional responses that are linked to specific domain structures and 

morphologies may be preserved over a broader range of loading conditions that would 

otherwise disrupt microphase structure solely stabilized by physical crosslinking.  We 

report herein the synthesis of a new class of recombinant elastin-mimetic triblock 

copolymer capable of both physical and chemical crosslinking.  These investigations 

were motivated by a desire to capture features unique to both physical and chemical 

crosslinking schemes so as to exert optimal control over a wide range of potential 

properties afforded by protein-based mutiblock materials.  

 
 
 
2.2 MATERIALS and METHODS 

 
Synthetic gene construction of elastic- and plastic-like domains.  Synthetic 

methods used to produce the DNA inserts that encode the various elastin-mimetic block 

copolymers have been described previously [2-5].  Genes encoding two distinct 

chemically crosslinkable protein triblock copolymers were synthesized.  Briefly, 

oligonucleotide cassettes encoding elastic- (E) and plastic-like (P) repeat units (Table 2-

1, Appendix A) were independently synthesized and inserted into the BamH I and HinD 

III sites within the polylinker of pZErO cloning vectors.  Specifically, P1 and E1 encode 

the monomer repeat unit for plastic- and elastic-like domains designated for the triblock 

protein polymer, referred to as LysB10.  A second set of oligonucleotide cassettes, P2 
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and E2, were designed to encode monomer repeat units for plastic- and elastic-like 

domains for a second protein triblock copolymer, designated R4.  Recombinant clones 

were isolated after propagation in E. coli strain TOP10F’ and the identity of the DNA 

inserts E and P verified by double-stranded DNA sequence analysis.   DNA monomers E 

and P were liberated from the respective plasmids via sequential restriction digestion 

with Bbs I and BsmB I, respectively.  Multimerization, or self-ligation in a head-to-tail 

fashion of each DNA cassette afforded a population of multimers.  This procedure was 

repeated separately for the four multimers synthesized in this report (P1, E1, P2, and E2).   

Multimers derived from DNA monomers were inserted into the BsmB I site of 

their original plasmid containing the monomer cassette.  Multimers encoding 33 repeats 

of the P1 monomer, 16 repeats of the P2 monomer, 28 repeats of the E1 monomer, and 

15 repeats of the E2 monomer were isolated and identified via restriction cleavage with 

BamH I and HinD III.  Double-stranded DNA sequence analysis confirmed the integrity of 

the concatemers within the recombinant plasmids, which were labeled pP1, pP2, pE1, and 

pE 2, respectively.  pP1 and pE1 were utilized in the construction of the LysB10 gene, pP2 

and pE 2 for the R4 gene.  
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Table 2-1.  Coding Sequences of Oligonucleotide Cassettes Employed for the Construction of Crosslinkable 
Protein Triblocks, LysB10 (AP1IE1IP1A) and R4 (AP2IE2IP2A) 
E 1 Block (LysB10 Elastic-like Block) 

Val Pro Gly Ala Gly Val Pro Gly Ala Gly Val Pro Gly Glu Gly 
GTT CCA GGT GCA GGC GTA CCG GGT GCT GGC GTT CCG GGT GAA GGT 
Val Pro Gly Ala Gly  Val Pro Gly Ala Gly 
GTT CCA GGC GCA GGT  GTA CCG GGT GCG GGT 
 
E2 Block (R4 Elastic-like Block) 

Val Pro Gly Ile Gly Val Pro Gly Ile Gly Val Pro Gly Ile Gly    
GTT CCA GGT ATT GGC GTT CCG GGT ATC GGT GTG CCA GGC ATC GGT 
Val Pro Gly Ile Gly Val Pro Gly Ile Gly   
GTA CCG GGT ATT GGC GTT CCA GGC ATT  GGC  
 
 
P1 Block (LysB10 Plastic-like Block) 

Ile Pro Ala Val Gly Ile Pro Ala Val Gly Ile Pro Ala Val Gly 
ATT CCG GCT GTT GGT ATC CCA GCT GTT GGT ATC CCA GCT GTT GGC 
Ile Pro Ala Val Gly Ile Pro Ala Val Gly 
ATT CCG GCT GTA GGT ATC CCG GCA GTG GGC 
 
P2 Block (R4 Plastic-like Block) 

Ile Pro Ala Val Gly Ile Pro Ala Val Gly Ile Pro Ala Val Gly 
ATT CCA GCT GTT GGT ATC CCA GCT GTT GGT ATC CCA GCT GTT GGC 
Ile Pro Ala Val Gly Ile Pro Ala Val Gly 
ATT CCG GCT GTA GGT ATC CCG GCA GTG GGC 
 
 
I Block (Lysine Insert) 

Ile Pro Ala Val Gly Lys Ala Ala Lys Val Pro Gly Ala Gly 
ATT CCA GCT GTT GGT AAG GCG GCC AAG GTT CCA GGT GCA GGC 
 
 
A Block (Modified Lysine Adaptor) 

Val Pro Ala Val Gly Lys Val Pro Ala …… Ile Pro Ala Val 
GTT CCA GCT GTT GGT AAG GTT CCA GCT …… ATT CCA GCT GTT 
Gly  Lys Ala Ala Lys Ala  Stop 
GGT AAG GCG GCC AAG GCG TAA 
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Synthetic gene construction of chemical crosslinking domains.  Single 

stranded oligonucleotides encoding the sense and anti-sense strands of the Lysine 

Insert (I) and Lysine Adaptor (A) were chemically synthesized (Sigma Genosys, Inc.) 

(Appendix A, Table 2-1).  The Lysine Insert is a 60 bp DNA cassette encoding the 

crosslinking sequence, Lys-Ala-Ala-Lys, which was inserted between the plastic- and 

elastic-like domains.  The Lysine Adaptor is a 50 bp DNA cassette designed with 

restriction enzyme cut sites midway through the cassette to allow for insertion of the 

assembled triblock gene.  The Lysine Adaptor encodes for a single N-terminal lysine 

residue and two C-terminal lysine residues.  Additionally, it allows for facile cloning into 

the pET24-a expression vector within the multiple cloning region.  This ensures correct 

insertion of the gene in frame with the N-terminal polyhistidine tag.   

The following procedure detailing the protocol to generate double stranded DNA 

was implemented for both the Lysine Insert and Lysine Adaptor.  The DNA was 

suspended in 10 mM Tris buffer (pH 8) to a final concentration of 0.5 µg/uL.  A solution 

of 10 µg of each corresponding oligonucleotide, 4µL 5M NaCl, 4µL 1M MgCl2, 152 µL of 

sterile ddH2O was subjected to an annealing procedure initiated at a reaction 

temperature of 99°C with temperature decrements of 1°C every 5 minutes to a final 

reaction temperature of 30°C.  The resultant double stranded DNA cassette was 

analyzed by agarose gel electrophoresis (4% GTG NuSieve agarose, 1X TBE buffer).  

Double stranded synthetic DNA was phosphorylated through a 2-hour incubation 

with T4 Poynucleotide Kinase (New England Biolabs) in the presence of T4 DNA ligase 

buffer with 10mM ATPs (New England Biolabs).  The enzymes were removed with 

phenol/chloroform/isoamyl alcohol (25:24:1) and the double stranded DNA (dsDNA) was 

recovered through an ethanol precipitation.   

The pZErO-1 acceptor plasmid (1 µg), was prepared via BamH I and HinD III 

double digestion, followed by heat inactivation of the enzymes at 65°C and a dilution of 
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the digested plasmid to 10 ng/µL.  The Lysine Insert and Lysine Adaptor were designed 

with BamH I and HinD III overhangs to enable cloning into pZErO-1 at these restriction 

sites.  

The DNA cassette and respective acceptor plasmid were ligated together in the 

presence of T4 DNA Ligase at 16°C for 30 minutes.  A 2 µL aliquot of the ligation 

reaction mixture was used to transform 40 µL of electrocompetent TOP10F’ E. coli cells.  

A total of 100 µL of the transformation mixture was spread onto low salt (LSLB) agar 

supplemented with Zeocin (50 µg/µL).  The plates were incubated for 12 hours at 37°C.  

Five transformants were selected from each plate to inoculate individual 7 mL cultures of 

LSLB/Zeocin.  Cultures were rotary incubated for 12 hours at 37°C.  Plasmid DNA was 

isolated following a Qiagen Spin Miniprep protocol (Quiagen, Inc.).  DNA was initially 

screened by a BamH I and HinD III double digestion.  Positive transformants were 

verified by agarose gel electrophoresis (4% GTG NuSieve agarose, 1X TBE buffer).  

Automated DNA sequencing utilizing the M13 forward and M13 reverse primers 

confirmed correct DNA products.  Plasmids containing the correct sequence for the 

Lysine Insert and Lysine Adaptor are identified as pI and pA, respectively. 

 Assembly of elastin-mimetic triblock copolymers.  The proteins, LysB10 and 

R4 were designed to contain the Lysine Insert between each plastic-like and elastic-like 

blocks and to be flanked by the Lysine Adaptor (-Lysine Adaptor-Plastic-like Domain-

Lysine Insert-Elastic-like Domain-Lysine Insert-Plastic-like Domain-Lysine Adaptor-) 

(Scheme 2-1).  All subcloning steps were performed in the pZErO-1 plasmid using LSLB 

media under Zeocin antibiotic selection.  Scheme 2-1 summarizes the general cloning 

strategy employed in the assembly of these genes.
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Scheme 2-1.  General cloning strategy in the assembly of crosslinkable triblock genes.  
Plasmids have been designated by the DNA cassette they contain.  For example, the 
plasmid containing the Lysine Insert cassette is referred to as plasmid I (pI).  P = Plastic-
like cassette (blue), E = Elastic-like cassette (yellow), I = Insert cassette (black), A = 
Adaptor cassette (black). 
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Recombinant plasmids encoding the elastic-like (pE) (E1=2.1 kB, E2=1.1 kB) and 

plastic-like (pP) (P2=2.5 kB, P2=1.2 kB) domains were constructed, as described above.   

Each gene was isolated from its respective plasmid with Bbs I and BsmB I sequential 

digestion.  The gene fragment was isolated via preparative gel electrophoresis (1% 

agarose, 0.5X TBE) and purified using Zymoclean Gel Recovery (ZymoResearch, Inc).  

Preparative amounts of pI DNA was isolated for two separate reactions.  A total of 5 µg of 

pI was digested with restriction enzyme Bbs I and Shrimp Alkaline Phosphatase (SAP) 

dephosphorylated (1 U SAP per 1 pmol strand ends) to prevent re-ligation.  A separate 5 

µg of pI was digested with the restriction enzyme BsmB I and SAP dephosphorylated.  

The linearized plasmids were isolated via preparative gel electrophoresis (1% agarose, 

0.5X TBE) and purified using Zymoclean Gel Recovery.   

Similar protocols for ligation, transformation, and propagation were followed, as 

previously described.  Two separate ligation reactions were performed between Bbs I 

digested pI and P and BsmB I digested pI and P (Scheme 2-1, Cloning Step 1).  

Isolated DNA from clones were screened by a BamH I and HinD III double digestion and 

cleavage fragments analyzed by agarose gel electrophoresis.  Correct ligation was 

confirmed by automated DNA sequence analysis using M13 forward and reverse 

primers.  Plasmids containing the correct sequences are identified as pIP and pPI.   

 Analogously, 5 µg of pPI was digested with restriction enzyme BsmB I and Shrimp 

Alkaline Phosphatase (SAP) dephosphorylated (1U SAP per 1 pmol strand ends) to 

prevent relegation.  The linearized plasmid was isolated via preparative gel 

electrophoresis (1% agarose, 0.5X TBE) and purified using Zymoclean Gel Recovery.  

Linearized pPI was ligated with E, followed by transformation and propagation (Scheme 2-

1, Cloning Step 2).  Isolated DNA from transformants were screened by a BamH I and 

HinD III double digestion and cleavage fragments analyzed by agarose gel 

electrophoresis.  Correct ligation was confirmed by automated DNA sequence analysis 
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using M13 forward and reverse primers.  The plasmid containing the correct sequence 

was termed pPIE. 

 Recombinant plasmids pIP and pPIE were digested with Bbs I / Xma I and BsmB I 

/ Xma I, respectively.  The gene fragment from each of these digestions was isolated via 

preparative gel electrophoresis (1% agarose, 0.5 x TBE) and purified using Zymoclean Gel 

Recovery.  IP and PIE fragments were ligated by T4 DNA ligase, transformed into 

TOP10F’ and plated on LSLB/Zeocin plates (Scheme 2-1, Cloning Step 3).  As the Xma I 

site cuts within the Zeocin coding region, only clones containing the correctly assembled 

triblock (PIEIP), and thus, the correctly reassembled antibiotic coding region, were able to 

propagate.  Transformants were confirmed by analysis of BamH I and HinD III restriction 

digest fragments with agarose gel electrophoresis (1% agarose, 0.5 x TBE) and 

automated DNA sequence analysis using M13 forward and reverse primers.  The plasmid 

containing the correct sequence for the triblock was termed, pPIEIP. 

 pA, containing the Lysine Adaptor, was assembled, as described above.  This 

plasmid was digested with restriction enzyme BsmB I and SAP dephosphorylated.  The 

triblock, PIEIP, was excised from the pZErO-1 plasmid via sequential digestion using 

restriction enzymes Bbs I and BsmB I and purified via gel isolation.   A ligation reaction 

was performed to relocate the PIEIP gene from pPIEIP to pA (Scheme 2-1, Cloning Step 

4).  The ligation mixture was transformed into competent TOP10F’ cells and plated on 

LSLB media under Zeocin antibiotic selection.  Isolated DNA from transformants were 

screened via agarose gel electrophoresis analysis of a BamH I and HinD III double 

digestion.  Automated DNA sequence analysis using M13 forward and reverse primers 

confirmed correct insertion of the gene pAP1IE1IP1A and pAP2IE2IP2A.  pAP1IE1IP1A was 

identified as the cloning plasmid, pLysB10 and pAP2IE2IP2A as the cloning plasmid, pR4.   

 The pET24-a plasmid (1 µg, Invitrogen) was prepared via BamH I and HinD III 

double digestion, followed by gel isolation and purification.  The APIEIPA gene was 
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released from the pZErO-1 vector at analogous sites.   Adaptor and plasmid were ligated 

together in the presence of T4 DNA ligase at 16°C for 30 minutes.  A 2 µL aliguot of the 

ligation reaction mixture was used to transform 40 µL of electrocompetent TOP10F’ E. 

coli cells.  A 100 µL aliquot of the transformation mixture was spread onto LB agar 

supplemented with kanamycin (50 µg/µL).  The plates were incubated for 12 hours at 

37°C.  Five transformants were selected from each plate to inoculate individual 7 mL 

cultures of LB/kanamyacin media.  Cultures were rotary incubated for 12 hours at 37°C.  

Plasmid DNA was isolated following a Qiagen Spin Miniprep protocol (Quiagen, Inc.).  

DNA was screened by a BamH I and HinD III double digestion.  Positive transformants 

were verified by agarose gel electrophoresis (4% GTG NuSieve agarose, 1X TBE 

buffer).  Automated DNA sequencing utilizing the T7 promoter and T7 terminator primers 

confirmed the correct DNA product.  The resultant plasmid was identified as expression 

plasmids, pLysB10 (AP1IE1IP1A) and pR4 (AP2IE2IP2A).  DNA agarose gels in Figures 

2-1 and 2-2 depicts gene products at each subcloning step in the assembly of pLysB10 

and pR4, respectively. 
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Figure 2-1.   Analytical restriction digests, 1% TAE (Tris-acetate-EDTA) agarose gel, 
depicting gene and vector sizes at each stage of the LysB10 assembly process with 
corresponding digestion schemes. DNA standard used was a 1Kb DNA ladder (NEB).  A. 
Lane 1: BamHI / HinDIII digest pE1 (2.1 Kb), pZerO-2 (3.3 Kb). Lane 2: BamHI / HinDIII 
digest pP1 (2.5 Kb), pZerO-2 (3.3Kb).  Lane 3: Nsi I / Xma I digest pP1I (2.56 Kb), pZerO-1 
(1.3, 1.5 Kb).  Lane 4:  Nsi I / Xma I digest pIP1 (2.56 Kb), pZerO-1 (1.3, 1.5 Kb).  B.  Lane 1: 
Nsi I digest pP1IE1 (4.66 Kb), pZErO-1 (2.8 Kb).  C.  Lane 1: Nsi I digest pP1IE1IP1 (7.22 Kb), 
pZErO-1 (2.8 Kb).  Lane 2: Nsi I digest LysB10 (7.28 Kb), pZErO-1 (2.8 Kb).    Lane 3: 
BamHI / HinDIII digest LysB10 (7.28 Kb), pET 24a (5.3 Kb). 
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Figure 2-2.  Analytical restriction digests, 1% TAE (Tris-acetate-EDTA) agarose gel, depicting gene and vector sizes at each stage of the R4 
assembly process with corresponding digestion schemes. DNA standard used was a 1Kb DNA ladder (NEB). A. Lane 1: Nsi I digest pE2 (1.1 
Kb), pZerO-1 (2.8 Kb). Lane 2: Nsi I digest pP2 (1.2 Kb), pZerO-1 (2.8Kb).  Lane 3: Nsi I digest pE2I (1.16 Kb), pZerO-1 (2.8 Kb).  Lane 4:  Nsi 
I digest pP2I (1.26 Kb), pZerO-1 (2.8 Kb).  Lane 5:  Nsi I digest pP2IE2I (2.42 Kb), pZerO-1 (2.8 Kb).  B.  Lane 1: Nsi I digest pP2IE2IP2 (3.62 
Kb), pZerO-1 (2.8 Kb). Lane 2: Nsi I digest pR4 (3.7 Kb), pZerO-1 (2.8Kb).  Lane 3: BamH I / HinD III digest pR4 (3.7 Kb), pET24-a (5.3 Kb).   
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Isolation and purification of protein triblock copolymers.  The plasmid, 

pLysB10, encoding the protein LysB10 as a single contiguous reading frame within 

plasmid pET24-a was used to transform the E. coli expression strain BL21(DE3).   This 

afforded a protein triblock of sequence (Table 2-2):   

N-terminal endblock: VPAVGK[(VPAVG)(IPAVG)4][(IPAVG) 5]33 

Midblock: (IPAVG)KAAK(VPGAG)[(VPGAG)2VPGEG(VPGAG)2]28(VPAVG)KAAK(VPGAG)  

C-terminal endblock:  [(VPAVG)(IPAVG)4][(IPAVG) 5]33IPAVGKAAKA   

The plasmid, pR4, encoding the protein R4 as a single contiguous reading frame 

within plasmid pET24-a was used to transform the E. coli expression strain BL21(DE3).   

This afforded a protein triblock of sequence (Table 2-3):  

N-terminal endblock:  VPAVGKVPAVG[(IPAVG)5]16  (IPAVG) 

Midblock:  (IPAVG)KAAK(VPGAG)(VPGIG) [(VPGIG)5]15(VPGIG)(VPAVG)KAAK(VPGAG) 

C-terminal endblock:  (VPGAG) [(IPAVG)5]16 (IPAVG)VPAVGKAAKA 

Large-scale fermentation (100 L) was performed at 37°C in Circle Grow (Q-

BIOgene) medium supplemented with kanamycin (50 µg/mL) at the Bioexpression and 

Fermentation Facility, University of Georgia.  The fermentation cultures were incubated 

under antibiotic selection for 24 hours at 37°C.   

Cells were harvested through centrifugation in sterile tubes at 1660 RCF for 20 

minutes at 4°C.  The supernatant was carefully decanted, cell pellets were resuspended 

in cold, sterile PBS (phosphate buffered saline, 20 mL per large culture flask pellet) and 

frozen at -80°C.   Three freeze (-80°C) / thaw (25°C) cycles were employed for the initial 

cell fracture with equilibration back to cold temperatures following the cycles.  Once cells 

were completely resuspended, six cycles of sonication, consisting of 20 second bursts 

followed by a 20 second rests in an ice bath, was employed to thoroughly break the 
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cells.  To recover any unbroken cells, a preparative centrifugation step was used (1660 

RCF for 10 minutes at 4°C).  Unbroken cells, which pelleted out during the spin were 

resuspended in cold, sterile PBS and re-sonicated, as described above.   

 The cold cell lysate was centrifuged at 20,000g for 40 minutes at 4°C.  The 

supernatant was transferred to a cold, sterile tube and poly(ethyleneimine) (PEI) was 

added to a final concentration of 0.5%.  This solution was centrifuged again at 20,000g 

for 40 minutes at 4°C to remove all nucleic acids and contaminating cellular material 

precipitated by the PEI.  The supernatant was transferred to new sterile 50 mL tubes and 

NaCl was added to a 2M final concentration.  The elastin-mimetic protein was salted out 

of solution at 25°C for 30-45 minutes.  This solution was centrifuged at 9500g for 15 

minutes at 25°C to recover the protein product (‘hot-spin’).  The supernatant was 

discarded and the protein pellet was resuspended in cold, sterile PBS on ice for only 10-

20 minutes to avoid solubilizing unwanted contaminates.  The resuspended protein 

solution was then subjected to a ‘cold spin’ at 20,000g for 40 minutes at 4°C.  The 

supernatant was transferred to sterile 50 mL tubes and salting precipitation was 

repeated.  The hot (25°C) / cold (4°C) spin cycles were repeated until no contaminating 

pellet was observed after the cold spin.  The number of cycles ranged between 6 to 10 

and ended with a hot spin.  Dialysis and lyophillization afforded proteins LysB10 and R4 

as fibrous solids in isolated yield of 150 mg/L and 200 mg/L of culture, respectively. 

For in vivo studies, LysB10 and R4 proteins underwent a secondary treatment 

with sodium hydroxide (NaOH).  The protein pellets were resuspended in cold, sterile 

PBS at approximately 50mg/20mL.  Sterile NaOH was added to a 0.4N final 

concentration and mixed gently by hand.  The mixture was incubated on ice for fifteen 

minutes, after which 5M sodium chloride was added to a final concentration of 2M.  The 

protein was precipitated from solution at 25°C, centrifuged at 8500g for 20 minutes at 

25°C, and resuspended in cold PBS.  This treatment was repeated for a total of three 
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times.  Following the third treatment, the protein solution was adjusted to pH 6-8.  A cold 

spin was performed at 20,000 rpm for 40 minutes at 4°C and the supernatant was 

sterilely desalted using PD-10 desalting columns (GE Healthcare Lifesciences) with 

molecular grade water (Cellgro).  The end product was filtered through a 0.2 µm filter, 

eluted into autoclaved Lyoguard freeze drying trays (Gore), frozen at -80°C, and 

lyophilized.  This procedure afforded Lys B10 and R4 as white fibrous protein products 

with isolated yields of 75 mg/L and 100 mg/L of expression culture, respectively.   

 Lyophilized protein was resuspended in sterile molecular grade water at 1 mg/mL 

and endotoxin levels were assessed according to manufacturer instructions using the 

Limulus Amoebocyte Lysate (LAL) assay (Cambrex).  Levels of 0.1 EU/mg were 

obtained (1 EU = 100 pg of endotoxin), which corresponds to endotoxin levels for 

clinically used alginate (Pronova sodium alginate, endotoxin < 100 EU/gram).  
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Table 2-2.  Amino acid sequence of LysB10 and related nucleic acid coding sequence 
[VPAVGKVPAVG(IPAVG)4][(IPAVG) 5]33 [IPAVGKAAKVPGAG][(VPGAG)2VPGEG(VPGAG)2]28 
[VPAVGKAAKVPGAGVPAVG(IPAVG)4][(IPAVG) 5]33[IPAVGKAAKA] 
 
Val Pro Ala Val Gly Lys Val Pro Ala Val Gly Ile Pro Ala Val 
GTT CCA GCT GTT GGT AAG GTT CCA GCT GTT GGT ATC CCA GCT GTT 
Gly Ile Pro Ala Val Gly Ile Pro Ala Val Gly Ile Pro Ala Val 
GGT ATC CCA GCT GTT GGC ATT CCG GCT GTA GGT ATC CCG GCA GTG 
Gly [Ile Pro Ala Val Gly Ile Pro Ala Val Gly Ile Pro Ala Val 
GGC ATT CCG GCT GTT GGT ATC CCA GCT GTT GGT ATC CCA GCT GTT 
Gly Ile Pro Ala Val Gly Ile Pro Ala Val Gly]33 Ile Pro Ala Val 
GGC ATT CCG GCT GTA GGT ATC CCG GCA GTG GGC]33ATT CCA GCT GTT 
Gly Lys Ala Ala Lys Val Pro Gly Ala Gly [Val Pro Gly Ala Gly 
GGT AAG GCG GCC AAG GTT CCA GGT GCA GGC GTT CCA GGT GCA GGC 
Val Pro Gly Ala Gly Val Pro Gly Glu Gly Val Pro Gly Ala Gly 
GTA CCG GGT GCT GGC GTT CCG GGT GAA GGT GTT CCA GGC GCA GGT 

Val Pro Gly Ala Gly]28 Val Pro Ala Val Gly Lys Ala Ala Lys Val 
GTA CCG GGT GCG GGT]28GTT CCA GCT GTT GGT AAG GCG GCC AAG GTT 

Pro Gly Ala Gly Val Pro Ala Val Gly Ile Pro Ala Val Gly Ile 
CCA GGT GCA GGC GTT CCA GCT GTT GGT ATC CCA GCT GTT GGT ATC 
Pro Ala Val Gly Ile Pro Ala Val Gly Ile Pro Ala Val Gly [Ile 
CCA GCT GTT GGC ATT CCG GCT GTA GGT ATC CCG GCA GTG GGC ATT 
Pro Ala Val Gly Ile Pro Ala Val Gly Ile Pro Ala Val Gly Ile 
CCG GCT GTT GGT ATC CCA GCT GTT GGT ATC CCA GCT GTT GGC ATT 
Pro Ala Val Gly Ile Pro Ala Val Gly]33 Ile Pro Ala Val Gly  Lys 
CCG GCT GTA GGT ATC CCG GCA GTG GGC]33ATT CCA GCT GTT GGT AAG 
Ala Ala Lys Ala  Stop 
GCG GCC AAG GCG TAA 
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Table 2-3.  Amino acid sequence of R4 and related nucleic acid coding sequence 
[VPAVGKVPAVG[(IPAVG)5]16  (IPAVGIPAVG)KAAK(VPGAGVPGIG) [(VPGIG)5]15 
(VPGIGVPAVG)KAAK(VPGAGVPAVG) [(IPAVG)5]16 IPAVGVPAVGKAAKA] 

 
Val Pro Ala Val Gly Lys Val Pro Ala Val Gly [Ile Pro  Ala Val 
GTT CCA GCT GTT GGT AAG GTT CCA GCT GTT GGT [ATT CCG   GCT GTT 

Gly Ile  Pro Ala Val Gly Ile Pro Ala Val Gly Ile Pro Ala Val 
GGT ATC  CCA GCT GTT GGT ATC CCA GCT GTT GGC ATT CCG GCT GTA 

Gly Ile Pro Ala Val Gly]16   Ile Pro Ala Val Gly Ile Pro Ala Val 
GGT ATC CCG  GCA  GTG GGC]16 ATT CCG GCT GTT GGT ATT CCA GCT GTT 

Gly Lys Ala Ala Lys Val Pro Gly Ala Gly Val Pro Gly Ile Gly 
GGT  AAG GCG GCC AAG GTT CCA GGT GCA GGC GTT CCA GGT ATT GGT 

[Val Pro Gly Ile Gly Val Pro Gly  Ile Gly Val Pro Gly Ile Gly 
[GTA CCT  GGT ATT GGC GTT CCG GGT  ATC GGT GTG CCA GGC ATC    GGT 

Val Pro Gly Ile Gly  Val Pro Gly Ile Gly]15 Val Pro Gly Ile Gly  
GTA CCG GGT  ATT GGC GTT CCA GGC ATT GGC]15 GTA CCT GGT ATT GGT 

Val Pro Ala Val Gly Lys  Ala Ala Lys Val Pro Gly Ala Gly Val 
GTT CCA GCT GTT GGT AAG GCG GCC AAG GTT CCA GGT  GCA GGC GTT 

Pro Ala Val Gly [Ile Pro Ala Val Gly Ile Pro Ala Val Gly Ile 
CCA GCT GTT GGT [ATT  CCG GCT GTT GGT ATC CCA GCT GTT GGT ATC 

Pro Ala Val Gly Ile Pro Ala Val Gly Ile Pro Ala Val Gly]16 Ile 
CCA GCT GTT GGC ATT CCG GCT GTA GGT ATC CCG GCA GTG GGC]16 ATT 

Pro Ala Val Gly Ile Pro Ala  Val Gly Lys Ala Ala Lys Ala Stop 
CCG  GCT GTT GGT ATT CCA GCT  GTT GGT AAG GCG GCC AAG GCG TAA 
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 Identification of elastin-mimetic proteins.    Sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed a single protein band 

at 250 kDa and 100 kDa corresponding to LysB10 (Figure 3A) and R4 (Figure 3B), 

respectively.  A total of 10 µg of the elastin-mimetic polypeptide along with molecular 

weight markers (Precision Plus Protein Kaleidoscope, Bio-Rad) were run on a 7.5% gel 

and negatively stained with a Copper stain (Bio-Rad).  As previously reported, molecular 

weights observed by SDS-PAGE for elastin-mimetic proteins are approximately 20% 

greater than calculated molecular weights [75, 97] .  

 
                                                  
 
 

                       
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-3.   Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
analysis of crosslinkable elastin-mimetic triblock copolymers.  A. LysB10, run on 7.5% SDS-
PAGE stained with Copper Stain (BioRad).  Expected molecular weight: 209 KDa.  B.  R4 
run on 7.5% SDS-PAGE stained with Copper Stain.  Expected molecular weight: 108 KDa.  
Marker lane: Precision Plus Protein Kaleidoscope (Bio-Rad).  C.  Assembly scheme for 
crosslinkable elastin-mimetic proteins, LysB10 and R4.  Both proteins are triblock 
copolymers with lysine-containing crosslinking domains flanking each plastic-like and elastic-
like domain.  Together, there are eight possible sites for chemical crosslinking afforded by 
the free amine moieties of the lysine residues and the N-terminal amine of the peptide chain.  
Plastic-like domain (grey), Elastic-like domain (white), Crosslinking domain (black).
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Amino acid composition analysis was performed by the Microchemical Facility at 

Harvard University.  Lyophilized protein was resuspended in HPLC grade water and 

dialyzed against the same water at 4°C with buffer changes.  Solutions of 1 mg/mL were 

submitted for analysis.  Amino acid compositional analysis of LysB10.  Calc. (mol.-%): 

Ala, 19; Glu, 1; Gly, 25.7; Ile, 13.9; Pro, 19.8; Val, 19.9. Obs. (mol.-%): Ala, 18.7; Glu, 

2.3; Gly, 23; Ile, 13.5; Pro, 18.1; Val, 18.  R4.  Calc. (mol.-%): Ala, 14.2; Gly, 26.1; Ile, 

19.2; Pro, 19.8; Val, 20.2. Obs. (mol.-%): Ala, 15.6; Gly, 24.3; Ile, 17.5; Pro, 19.4; Val, 

18.9. 

 Rheological analysis of concentrated protein polymer solutions.  

Rheological data were acquired on an Advanced Rheological Expansion System III 

rheometer (ARES III, TA instrument, NJ) in parallel plate geometry with a plate diameter 

of 25 mm.  The testing protocol for rheological analysis has been detailed elsewhere [1].  

In brief, 100 mg/mL protein solutions were prepared by adding distilled, deionized water 

to lyophilized protein at 4°C, shaking the solution for 48 hours, and then allowing the 

solution to equilibrate for 72 hours.  The gap between parallel plates was adjusted 

between 0.2 and 0.35 mm and dynamic mechanical experiments were performed in 

shear deformation mode.  An initial strain amplitude sweep was performed at 4°C and 

37°C at a frequency of 1 Hz to confirm the linear viscoelastic range for the protein 

polymer. 

 The gelation temperature was determined by heating samples from 4°C to 37°C 

at a rate of 1°C per minute.  Following temperature equilibration at 37°C, viscoelastic 

properties were examined by a strain sweep at a fixed frequency of 1Hz and a frequency 

sweep at fixed strain amplitude of 2%.  Experiments were repeated on six samples and 

representative data presented. 
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 Fabrication of water cast protein films.   For mechanical property analysis, 

films were cast from protein solutions in water at room temperature.  In brief, lyophilized 

proteins were dissolved at a concentration of 100 mg/mL in water at 4°C.  The protein 

solution was then poured into Teflon casting molds and regulated solvent evaporation 

performed at 23°C for 48 hours.  After complete solvent evaporation, films were 

subjected to glutaraldehyde (GTA) vapor phase crosslinking.  Specifically, films were 

enclosed in a 2 L chamber containing a 10 mL of 25% gluteraldehyde (GTA) solution.  

Films were placed on a platform 4 cm above the GTA solution and exposed to GTA 

vapor for 24 hours.  Subsequently, the films were rinsed in PBS for 48 hours with a 

change of PBS at 24 hours.  Test samples were referred to as crosslinked or non-

crosslinked indicating whether GTA treatment was used.  Prior to testing, films were 

hydrated in PBS at 37°C, which contained NaN3 at 0.2 mg/mL to prevent biological 

contamination.  Samples were cut into a dumbbell shape using a stainless steel die with 

gauge dimensions of 13 mm x 4.75 mm.  Hydrated film thickness, as measured by 

optical microscopy, was typically 0.07 mm for non-crosslinked and crosslinked Lys B10 

films and 0.1 mm for R4 films. 

 

Evaluation of water content in protein films.  For evaluation of water content, 

200 µL of a 10 wt% protein solution was cast as a disk measuring 1 cm in diameter.  

Dried films were vapor phase crosslinked with a 25% GTA solution for 24 hours, fully 

dehydrated under vacuum, and the dehydrated weight obtained using a Mettler balance.  

Films were subsequently incubated in PBS at 37°C for 24 hours and fully hydrated 

weights were obtained. A total of six films were evaluated for each protein. The 

equilibrium water content and equilibrium swelling ratio were determined according to 

equations (1) and (2), respectively [111].  
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 weighthydrated
 weightdehydrated - weight hydratedContent Water mEquilibriu =     (1) 

 weightdehydrated
 weighthydratedRatio Swelling mEquilibriu =                                       (2) 

 

Characterization of non-crosslinked extractables.   To determine the percent 

of potentially extractable protein polymer, 200 µL of a 10-wt% protein solution was cast 

as a disk measuring 1 cm in diameter.  Dried films were vapor phase crosslinked with a 

25% GTA solution for 24 hours, rinsed in PBS and incubated at 4°C, below the inverse 

transition temperature of the protein, for a period of seven days.  Every 48 hours films 

were dehydrated and dry weight was monitored for material losses. Six films were 

investigated for each protein.  The percent extractable was determined by equation (3).  

100
 weighthydrated
 weightdehydrated-1 esExtractabl % ×=      (3) 

Mechanical analysis of hydrated protein films.  A preconditioning protocol 

was employed for LysB10 samples that consisted of a single cyclic stretch to 50% strain 

for one cycle followed by 20 cycles of 30% strain with off-loading periods of 5 minutes 

between each cycle.  Due to the plasticity of R4 protein films, preconditioning was not 

conducted.  Uniaxial stress-strain properties of protein films were determined on at least 

five to six individual specimens using a dynamic mechanical thermal analyzer (DMTA V, 

Rheometric Scientific Inc., Newcastle, DE) with a 15 N load cell in the inverted 

orientation, so that samples could be immersed in a jacketed beaker filled with PBS at 

37°C.  The maximum travel distance of the drive shaft was 23 mm, which limited 

maximum strain to 70% of engineering strain.  Given the extensibility of these materials, 

uniaxial stress-strain responses were also characterized using a miniature materials 

tester (Minimat 2000, Rheometric Scientific) in tensile deformation mode at a rate of 5 
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mm/min conducted in air at room temperature.  All samples were coated with a thin layer 

of mineral oil to prevent dehydration.  For both DMTA and Minimat testing, samples were 

cut into a dumbbell shape using a stainless steel die with gauge dimensions of 13 mm x 

4.75 mm.  In addition, to calculating Young’s modulus (E), ultimate tensile stress (UTS), 

and strain at failure (ε), resilience was determined from equation (4).  

100
curve loadingunder  area

curve unloadingunder  area-curve loadingunder  area-1 Resilience % ×=  (4) 

Creep analysis was performed on 6 to 12 specimens for each film type subjected to 

varying levels of constant engineering stress for periods of up to 11 hours.   

 In vivo evaluation of crosslinked protein gels.  Syringe casting method for 

creating cylindrical implants.  In order to minimize sample manipulation and the risk of 

cross-contamination, the following protocol was used for preparation of samples for in 

vivo implant studies. A 10 wt% cold protein solution was drawn into a chilled sterile 1 mL 

syringe (Becton Dickenson) and subsequently gelled at 37°C.  The tip of the syringe was 

removed with a sterile scalpel and the molded protein gel extruded into room 

temperature PBS.  Gel samples, 4.75 mm in diameter by 8 mm in length, were incubated 

in 0.5% GTA for 24 hours.  Following crosslinking, samples were washed in sterile PBS 

for 48 hours with 20 buffer exchanges.  

Subcutaneous and peritoneal implant models.  All animal experiments were 

approved by the Institutional Animal Care and Use Committee (IACUC) at Emory 

University.  Eight-week-old inbred male C57BL/6 mice weighing 25–30 g were obtained 

from the Jackson Laboratory (Bar Harbor, ME).  Under ketamine (95 mg/kg, IM) and 

xylazine (5 mg/kg, IM) anesthesia, a 1 cm dorsal midline incision was performed and a 

single test sample implanted in the subcutaneous space, parallel to the longitudinal body 
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axis of each mouse.  Each implant type was implanted in at least three separate mice.  

Three weeks after implantation, animals were sacrificed and samples explanted with 

overlying skin.  For peritoneal implants, a 1 cm long midline incision was made along the 

linea alba of the abdominal wall and a single implant placed into the peritoneal cavity. 

After closing the abdominal muscle with 4-0 absorbable surgical suture (Vicryl, Ethicon, 

Inc, NJ), the skin incision was closed with wound clips.  Each recombinant protein was 

implanted in at least five mice.  Mice were sacrificed one week later and, prior to sample 

removal, a peritoneal saline lavage was performed to harvest cells for FACS analysis.   

Histological examination.  Retrieved samples were processed for histological and 

immunohistochemical evaluation to characterize the local cellular response and to 

determine the extent and thickness of fibrous capsule formation.  All samples were fixed 

in 10% neutral buffered formalin overnight and processed for parafin embedding.  

Sections were prepared at a thickness of 5 µm and stained with hematoxylin and eosin 

(H&E) or rat anti-mouse monoclonal F4/80 (CI:A3-1, Abcam) to identify infiltrating 

macrophages.  In all cases, multiple sections were examined in three to five separate 

samples for each protein polymer type.   

Fluorescent-activated cell sorting (FACS) of peritoneal lavage.   Prior to 

harvesting implants, each peritoneal cavity was initially lavaged with 10 mL of cold 

Hank’s Balanced Salt Solution containing 10 U/mL heparin and 1% BSA (Mediatech, 

Inc).  Typically, 6 to 7 mL of lavage solution was retrieved and cells immunostained for 

flow cytometry with PE-conjugated rat monoclonal anti-mouse CD11b for macrophages, 

FITC-conjugated hamster anti-mouse CD3 for total T cells, FITC-conjugated rat 

monoclonal anti-mouse CD4 for helper T cells, FITC-conjugated rat monoclonal anti-

mouse CD8 for cytotoxic T cells, FITC-conjugated rat monoclonal anti-mouse CD19 for 

B cells, and FITC-conjugated rat monoclonal anti-mouse Gr-1 for neutrophils (BD 

Biosciences Pharmingen).  Typically, antibodies were diluted to 1 µg/50 µL/106 cells in 



 

39 

PBS containing 1% BSA and 0.1% sodium azide.  Cells were incubated in the dark for 

30 minutes on ice, then washed three times in staining buffer, and fixed in 1% 

paraformaldehyde.  Analysis was performed on a FACScan using Cellquest (Becton 

Dickinson) and FlowJo software (Tree Star) [112]. Comparison between groups was 

analyzed via a Student’s t-test and p < 0.05 were considered to be significant.  Results 

are presented as mean ± SEM. Two control groups were employed; one that did not 

undergo surgery and another in which surgery was performed without sample 

implantation.   At least five mice were enrolled in each experimental and control group. 

 

2.3 Results and Discussion 

Synthesis of triblock protein copolymers capable of both chemical and 

physical crosslinking.  We have recently reported the design of a new class of 

recombinant elastin-mimetic triblock copolymer that has the capacity to form physical or 

virtual crosslinks, which stabilize protein network structure [1-3].  Moreover, through 

selective engineering of block structure, including the design of block size or sequence, 

and choice of film casting conditions, microphase structure can be manipulated and, as 

a consequence, material properties, such as drug elution characteristics and mechanical 

behavior tailored over a wide range of responses [1, 4, 5].  However, physical crosslinks 

formed as a result of hydrophobic aggregation may be deformed or disrupted under 

external stresses lower than that required to disrupt covalent crosslinks.  This feature 

may limit the capacity of physically crosslinked protein-based materials to retain material 

integrity under loading conditions operative for a number of potential applications in 

tissue engineering or regenerative medicine.  Given these considerations, we have 

postulated that chemically locking a multiblock protein assembly in place may provide a 

strategy to preserve functional responses that are linked to specific domain structures 

and morphologies over a broader range of externally applied loads. Further, it would also 



 

40 

provide an additional approach for altering material strength and compliance, as well as 

stress induced creep behavior. 

In this report, elastin-mimetic triblock copolymers were designed with endblock 

sequences, encoded by a hydrophobic repeat sequence, (IPAVG), that exhibits plastic-

like mechanical responses, and a central elastomeric block of varying amino acid 

structure.  The endblock sequence was selected to display an inverse temperature 

transition in water below 37°C, thereby mediating protein self-assembly due to endblock 

coacervation at or above this temperature.  Sites for covalent crosslinking were 

engineered at positions flanking each block.  Two target proteins were genetically 

engineered.  A 209 kDa triblock, LysB10, was designed with hydrophobic endblocks 

with a mass of approximately 75 kDa each, which contained 33 repeats of the 

pentapeptide sequence [IPAVG]5, separated by a 58 kDa hydrophilic midblock 

comprised of 28 repeats of the pentapeptide sequence [(VPGAG)2VPGEG(VPGAG)2] 

(Table 2-2).  Crosslinking sites that contained a pair of lysine residues (KAAK) flanked 

each block, such that a total of eight crosslinkable residues were potentially accessible.  

The presence of glutamic acid residues (E) was responsible for the hydrophilic character 

of the midblock. 

In addition, a 108 kDa triblock protein polymer, designated as R4, was 

synthesized with flanking hydrophobic plastic-like endblocks, each with a mass of 

approximately 37 kDa that contained 16 repeats of [IPAVG]5 , separated by a 35 kDa 

midblock comprised of 15 repeats of [VPGIG]5  (Table 2-3). Likewise, a total of eight 

potential crosslinking sites were engineered into the protein sequence; positioned 

predominantly as lysine pairs (KAAK) that flank each block. The substitution of 

isoleucine for glutamic acid in the midblock yielded a protein that was largely 

hydrophobic with little difference in block polarity.  While VPGEG and VPGIG are both 

reported to form β-spiral structures that display elastic responses when crosslinked as 
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gels, polypeptides from each sequence differ significantly in their inverse transition 

temperature.  Specifically, by incorporating the hydrophobic residue, isoleucine, into the 

fourth position of the repeat sequence, the inverse transition temperature of VPGIG is 

much lower than that associated with VPGEG [66, 67, 81-83]. 

Lysine crosslinking domains were engineered with an appreciation of the 

structure of similar crosslinking sites in native elastin and a consideration of the ‘N-end 

rule’, such that the identity of the N-terminal residue of a recombinant protein may 

influence degradation in bacterial expression systems.  In native elastin, crosslinking 

domains contain paired lysines within polyalanine repears (eg. Ala-Ala-Ala-Lys-Ala-Ala-

Lys-Ala-Ala) [108, 109], which promotes formation of an alpha-helix that has been 

reported to facilitate intermolecular crosslinking [62-65].  Thus, for both protein triblock 

copolymers, a lysine containing insert was designed encoding two lysine residues 

separated by two alanine residues (Lys-Ala-Aal-Lys) that was inserted between 

component blocks.  Additionally, lysine containing adaptor sequences were designed to 

encode for two C-terminal, as well as a single lysine residue near the N-terminus.  

Lysine was not incorporated as an N-terminal residue, as previous efforts to encode 

lysine in this position have lead to a 10-fold decrease in protein yield [74, 85, 86, 113].  

This design afforded eight free amines for crosslinking, seven from lysine and one from 

the N-terminal amine (Figure 2-3C). 

 

Rheological analysis confirms formation of viscoelastic protein gels.  The 

gelation point of protein solutions can be determined by measurement of G’ and G” as a 

function of temperature at a fixed frequency.  Above 13°C, the shear storage (G’) and 

loss (G”) modulus of concentrated aqueous solutions of LysB10 increased by a factor of 

approximately 103 and 10 (Pa), respectively, while tan δ (G’/G”) decreased, consistent 
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with the formation of a viscoelastic gel (Figure 2-4A). Above 15 °C, R4 solutions 

displayed an increase in shear storage (G’) and loss (G”) modulus to 104 and 103 (Pa), 

respectively, with only a modest reduction in tan δ (Figure 2-4C). For both LysB10 and 

R4 protein solutions at 37°C, G’ and G” were independent of frequency between 1 to 10 

rad/s at a fixed strain amplitude of 2% (Figure 2-4B, 2-4D).  In addition, the complex 

viscosity (η*) was a linear function of the logarithm of frequency with a slope of -1.  

However, as evident by a significantly higher tan δ and complex viscosity, aqueous gels 

of R4 were more viscous than those of LysB10. This difference highlights the 

significance of the midblock structure in triblock design.  Despite similar endblock 

structure and the presence of an elastomeric midblock sequence in both R4 and LysB10 

triblocks, the R4 midblock is considerably more hydrophobic and coacervates along with 

the endblock at 37°C.  Indeed, when expressed as single blocks the inverse transition 

temperatures of the R4 endblock and midblock proteins were 26°C and 16°C, 

respectively, while the comparable transition temperatures for LysB10 blocks were 21°C 

and >80°C  (data not shown).  Thus, significant mixing of the elastomeric and plastic-like 

blocks occurs only in the case of gels produced from the R4 protein polymer, which 

limits its elastomeric response.  We have previously demonstrated that selected 

changes in midblock size and amino acid sequence result in significant changes in 

viscoelastic mechanical properties.  Indeed, a more viscous response, similar to that 

observed for R4, was displayed by a protein composed entirely of hydrophobic plastic-

like endblock sequences [1].  
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Figure 2-4.  Rheological behavior of triblocks in water.  (A) LysB10 dynamic shear storage (G′), loss modulus (G″) are plotted as a 
function of temperature (γ 2%, ω 1Hz).  (B) LysB10 dynamic shear storage (G′), loss modulus (G″), and complex viscosity (η*) are 
plotted as a function of frequency (γ 2%, 37°C). (C) R4 dynamic shear storage (G′), loss modulus (G″) are plotted as a function of 
temperature (γ 2%, ω 1Hz).  (D) R4 dynamic shear storage (G′), loss modulus (G″), and complex viscosity (η*) are plotted as a 
function of frequency (γ 2%, 37°C).
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Glutaraldehyde crosslinking of elastin-mimetic triblock copolymer films. 

Investigations by our group and others have demonstrated that covalent crosslinks can 

enhance the mechanical stability of a variety of elastin analogues (Table 2-4).  Aldehyde 

crosslinking agents, such as glutaraldehyde, have been commonly used to process 

implanted tissues and proteins because of their capacity for efficient crosslink formation 

with an associated reduction in tissue antigenicity and enhanced mechanical strength 

[114, 115].  While limitations of glutaraldehyde exist [96, 107], since it remains an 

industry standard and its effects are otherwise well established, it was used in this study 

as a model crosslinking system. 

As a measure of the extent of crosslinking, the percent of extractable protein was 

examined after incubating samples at 4°C for seven days.  Below the inverse transition 

temperature, non-crosslinked films dissolved immediately due to disruption of physical 

crosslinks.  After vapor phase GTA crosslinking, films retained approximately 86% 

(LysB10) and 88% (R4) of their mass consistent with a high degree of chemical 

crosslinking, despite a relatively limited number of crosslink sites per protein species.  

The equilibrium water content observed for R4 and LysB10 films was 32.0 ± 3.7% and 

54.3 ± 3.8%, respectively; values that are similar to the 32% water content reported for 

hydrated elastin at 36°C [116].  Likewise, water swelling ratios were 1.5 ± 0.1 for R4 and 

2.4 ± 0.2 for LysB10, consistent with the higher proportion of hydrophobic amino acids 

in R4. 
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Table 2-4. Review of chemically crosslinkable elastin-mimetic systems and chemical crosslinking strategies 
 

Abbreviations:  CS5-RGD cell binding domain, GTA-glutaraldehyde, DSG-disuccinimidyl glutarate, HMDI-hexamethylene diisocyanate, BS3-bis(sulfosuccinimidyl) 
suberate, DSS-disuccinimidyl suberate, TSAT-tris-succinimidyl aminotriacetrate, THPP-tris(hydroxymethyl)phosphino-propionic acid, PQQ-pyrroloquinoline quinine, E= 
elastic modulus, σ = ultimate tensile strength, ε = elongation at break, G* = complex modulus, G = shear modulus

 
Crosslinkable Recombinant Elastin-

Mimetic Proteins 
Molecular  

Weight (kDa) 
Crosslinking 

Agent 
Fabrication 
Technique 

Mechanical 
Evaluation 

Biocompatibility 
Evaluation Reference 

Poly(KGGVG) (polydisperse) 6.5-14 
(polydisperse) GTA and DSG hydrogel - 

 
- 
 

[94] 
 

VPGIG2VPGKGVPGIG2-CS5- 
VPGIG2VPGKGVPGIG2 

80.7 GTA film - - [93] 

E = 0.099-0.32 MPa 

σ = 0.5-0.9 MPa CS5-(VPGIG)20 
[CS5-(VPGIG)20]3 
[CS5-(VPGIG)20]5 

14, 36.6, 59 GTA film 
ε = 251-393 % 

 

- [86] 

[VPGVG4VPGKG]25 80.6 BS3 and DSS hydrogel - - [98] 

E = 0.4-0.9 MPa 
G = 0.13-0.31 MPa 

CS5-(VPGIG)25 
[CS5-(VPGIG)25]3 
[CS5-(VPGIG)25]5 

14, 36.6, 59 Isocyanate hydrogel 
Ε = 340-570 % 

 
- [96] 

ELP[KV6]-102, ELP[KV16]-112 42.7, 47 TSAT hydrogel G* = 1.6-15 kPa - [97] 

ELP[KV6-112] 47.1 TSAT Hydrogel + cells G* = 0.28-1.7 kPa non-cytotoxic in vitro [107] 

KV7F-72 AND KV2F-64 31, 28.3 THPP Hydrogel G* = 5.8-45.8 kPa non-cytotoxic in 
vitro, 3 days [101, 102] 

E = 1.8 MPa Genipin Film ε = 0.68 mm/mm - 

E = 0.4 MPa 
Exons 20-24 

 10 
PQQ Film ε = 0.90 mm/mm - 

[65, 92] 
 

E = 0.08-0.7 MPa BS3 Film G = 0.022-0.060 MPa - 

E = 0.3-0.97 MPa 
CS5-[(VPGIG)2(VPGKG)(VPGIG)2] 4 

 37 
DSS Film G = 0.12-0.32 MPa - 

[100] 
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Mechanical responses of LysB10 copolymer films.  Most biomolecular 

constructs represent dynamic systems of hydrated biopolymer chains whose 

entanglements and structural interrelationships may be altered in response to an 

external load.  As a consequence, initial mechanical properties may change in response 

to repetitive loading forces until stable behavior is observed.  Thus, mechanical 

preconditioning is presumed to induce changes in microstructure that lead to fixed 

structural rearrangements of the constituent polymer chains and, as a consequence, 

stable material properties under a given loading environment [117-120]. Preconditioned, 

non-crosslinked LysB10 films were robust and elastomeric; displaying an elastic 

modulus of 0.49 ± 0.03 MPa, an ultimate tensile strength of 2.88 ± 0.71 MPa, a strain at 

failure of 463 ± 43%, and a resilience of 53 ± 2%.  In contrast, preconditioned 

crosslinked samples exhibited a three-fold increase in Young’s modulus (1.10 ± 0.45 

MPa) and a 50% decrease in strain at failure (223 ± 30%) along with no significant 

change in ultimate tensile strength compared to their non-crosslinked counterparts 

(Table 2-5, Figures 2-5, 2-6).  We speculate that these differences are largely related to 

the stabilization of semi-rigid endblocks by chemical crosslinking.  While crosslinking 

enhanced strength and modulus, a modest reduction in resilience was noted.  Since 

crosslinking was performed prior to preconditioning, the capacity of chain entanglements 

between midblock and endblock sequences to structurally rearrange in response to the 

conditioning protocol may have been restricted.  In other words, crosslinked-fixed mixing 

between rigid and elastomeric domains, in addition to restricting the mobility of the 

elastomeric phase, may have contributed to this effect.  

The approximate hoop stress of a blood vessel with an inner diameter of 4.5 mm 

and wall thickness of 0.8 mm is 45 kPa, when subjected to an intraluminal pressure of 

16 kPa (120 mmHg).  Crosslinked LysB10 films demonstrated limited creep (<10%) over 

11 hours at stress levels at or below 45 kPa. Increasing the applied stress by a factor of 
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ten increased creep to ~30% (Figure 2-7A).  In contrast, non-crosslinked films showed a 

four-fold greater level of creep strain in response to 45 kPa loading stress (Figure 2-7B). 

 

Mechanical responses of R4 copolymer films.  Hydrated R4 films revealed 

plastic-like deformation behavior.  Specifically, stress increased linearly with increasing 

strain until a yield point was observed at 1.72 MPa and 4.49 MPa in non-crosslinked and 

crosslinked films, respectively (Figure 2-8A). Corresponding values of Young’s modulus 

were 48.6 ± 0.9 MPa and 67 ± 5.14 MPa for non-crosslinked and crosslinked samples, 

respectively.  These values are four- to ten-fold greater than those noted for LysB10 

(Table 2-5).  As compared to LysB10, the more hydrophobic character of R4 is 

associated with reduced water uptake, which contributes to an increase in material 

rigidity and tensile strength.  Moreover, given the similarity of endblock and midblock 

polarity, size, and transition temperature, we speculate that a greater degree of block 

mixing occurs in films composed of R4 with rigid, plastic-like domains sustaining a higher 

level of the external load.  Crosslinking appears to have a relatively greater effect on the 

yield point (2.6-fold increase) than Young’s modulus (1.4-fold increase).  Likely, the 

effect of block mixing has a more profound effect on the mobility of the elastomeric 

phase than crosslinking, which predominantly stabilizes the semi-rigid endblocks.  

Consistent with these observed uniaxial stress-strain properties, crosslinked R4 films 

demonstrated limited creep strain (<10%) over an 11-hour period, despite applied 

stresses as high as 400 kPa.  Substantial deformation, however, was noted at stresses 

of nearly 1 MPa (Figure 2-8B). 
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Table 2-5.  Summary of mechanical parameters in crosslinked and non-crosslinked films 

Protein Treatment 
Resilience 

(%) 
Young’s Modulus 

DMTA (MPa) 

Young’s 
Modulus 

 Minimat (MPa) 
UTS 

(MPa) 

Strain at 
Failure  

(%) 

LysB10 GTA Xlinked 39 ± 1* 1.10 ± 0.45*  1.60 ± 0.48* 3.62 ± 0.98 223 ± 30* 

LysB10 Non-Xlinked 52 ± 2* 0.49 ± 0.03* 0.53 ± 0.02* 2.88 ± 0.71 463 ± 43* 

R4 GTA Xlinked - 67.4 ± 5.14* - 4.49 ± 0.27* 8 ± 2* 

R4 Non-Xlinked - 48.6 ± 0.90* - 1.72 ± 0.30* 4.9 ± 1* 

B10§ 
 

Water-25 

 

67± 1 

 

0.71 ± 0.12 

 

- 

 

- 

 

- 

 
Average values obtained from 3-10 replicates.  Resilience and Young’s Modulus determined from DMTA testing.  Young’s modulus, UTS, and % 
Strain determined from Minimat testing. *(p < 0.05 between crosslinked and non-crosslinked samples) 
§B10 Data obtained from Wu et al, Biomacromolecules, in review [6]. 
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Figure 2-5.  The influence of preconditioning on the resilience of water cast LysB10 
films with and without glutaraldehyde crosslinking (Figure A and B, respectively).  A 
sample was cyclically stretched to 50% strain and then to 30% for 20 cycles, with an off-
loading period of 5 minutes between cycles.  This figure is representative of multiple 
data sets.  

A 

B 
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Figure 2-6. A. The influence of preconditioning on the resilience of water cast LysB10 
films with (left y-axis) and without glutaraldehyde crosslinking (right y-axis).  The sample 
was cyclically stretched to 50% strain and then to 30% for 20 cycles, with an off-loading 
period of 5 minutes between cycles.  This figure is representative of multiple data sets 
and illustrates cycle 20 of 30% stretch. B. Uniaxial stress-strain analysis performed on a 
Minimat 2000.  The Young’s modulus was 1.60 ± 0.48MPa for preconditioned 
glutaraldehyde crosslinked films and 0.53 ± 0.02 MPa for preconditioned non-
crosslinked films measured from the linear region.
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Figure 2-7.  A.  Creep behavior of water cast LysB10 films GTA crosslinked examined 
as tensile stress was maintained at 45KPa and 450KPa.  These figures are 
representative of multiple data sets in which variability was <10%.  B. Comparison of the 
creep behaviors of water cast LysB10 films with and without gluteraldehyde crosslinking 
at applied stresses of 45 KPa.   

A 

B 



 

52 

  
 

Figure 2-8.   A.  Uniaxial stress-strain analysis.  The Young’s modulus was determined 
from the linear region of the curve as 67.4± 5 MPa for glutaraldehyde crosslinked R4 
films measured on a Minimat 2000 and 48.6± 9 MPa for non-crosslinked R4 films 
measured on a DMTA. B. Comparison of the creep behaviors of water cast R4 films 
subjected to gluteraldehyde crosslinking.  Creep was examined as tensile stress was 
maintained at 45KPa and 450KPa, and 800KPa.  This figure is representative of multiple 
data sets.  R4 samples were not preconditioned. 

A 
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In vivo responses to crosslinked elastin-mimetic protein hydrogels.  Using 

a murine model, crosslinked LysB10 and R4 hydrogels were implanted into either the 

subcutaneous space or the peritoneal cavity.  FACS analysis demonstrated no 

difference in either the cell number or cell type identified within peritoneal lavage fluid, 

harvested one week after either sham surgery or protein polymer implantation (Figure 2-

9). Samples implanted within the peritoneal cavity and subcutaneous tissue were 

explanted one and three weeks after implantation, respectively (Figures 2-10, 2-11).  

Macrophages were identified along the periphery of the fibrous capsule and in the 

surrounding tissue without infiltration into the implant. The fibrous capsule thickness of 

LysB10 samples within the subcutaneous space was 25.3 ± 16.1 µm, while the capsule 

measured 14.5 ± 5.3 µm for those placed in the peritoneal cavity.  R4 implants displayed 

a similar response, with a fibrous capsule thickness of 24.2 ± 6.0 µm and 8.4 ± 1.2 µm 

for subcutaneous and peritoneal cavity implants, respectively.   

Tissue-material interactions, including biopolymer stability, are integral to 

assessing the suitability of elastin-like protein polymers for implant related applications.  

To date, reports documenting in vivo responses to elastin-mimetic protein implants have 

been limited; largely confined to studies performed 15 to 20 years ago on proteins 

synthesized chemically and subject to radiation crosslinking [82, 121].  In these 

investigations, homopolymers or copolymers composed of VPGVG, VPGKG, VPGEG, 

IPAVG, and VPAVG reportedly did not induce significant inflammatory or allergic 

reactions [121-124]. The most thoroughly characterized elastin variant, chemically 

synthesized poly(GVGVP), was subjected to in vitro toxicity and mutagenicity assays 

and was administered via intravenous, intraocular, intramuscular, intraperitoneal, and 

subcutaneous routes without toxic effect [82, 121].  A fibrous capsule was noted three 

weeks after intramuscular implantation of a radiation crosslinked sample [82].  In a more 
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recent report, elastin microparticles prepared from chemically synthesized poly(VPAVG) 

were evaluated following subcutaneous and intravitreal injection.  No inflammatory 

response was observed after 28 days.  However, tractional retinal detachment was 

noted [122].  The failure to detect an immune mediated reaction to these polymers is 

consistent with other studies that have sought to identify potentially immunogenic 

epitopes on native elastin.  While polyclonal and monoclonal antibodies can be raised 

against peptides derived from the hydrolysis of native elastin, neither VPGVG nor 

VPAVG peptides have been among the recognized sequences [124].  Moreover, 

VPGVG peptides were unable to competitively inhibit the binding of any of the antibodies 

raised against native elastin, which further supports the notion that this pentapeptide is 

not present among antigenic elastin epitopes [124]. 

Recently, genetically engineered elastin-mimetic protein polymers have been 

investigated in vivo as non-thrombogenic coatings [7, 125], targeted drug delivery 

vehicles [126-128], and as an implantable material [129].  In the latter instance, after a 

13 week implant period in the subcutaneous space, recombinant human tropoelastin 

‘sponges’, chemically crosslinked with bis(sulfosuccinimidyl) suberate, were surrounded 

by a fibrous capsule with a minimal to moderate inflammatory response [129].  Non-

chemically crosslinked recombinant elastin-like proteins have also been administered 

within the intra-articular space as a 650 µM protein solution [129].  Although the 

biological response was not evaluated, this study revealed a three hour half-life for non-

aggregating VPGVG proteins and a three day half-life for aggregating VPGXG proteins, 

where X = V:G:A at a ratio of 1:7:8.  As a related material, a 47 kDa recombinant silk-

elastin-like protein (SELP), comprised of GAGAS silk-like [S] and GVGVP elastin-like [E] 

amino acid sequences ([S]4[E]4[EK][E]3) has been studied after injection into the 

subcutaneous space.  Histological analysis revealed minimal fibrous encapsulation after 

four weeks with a mild degree of inflammation that included the presence of 
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macrophages in the surrounding tissue [130].  SELPs have been also used for 

adenoviral gene delivery and demonstrate prolonged and localized expression of 

adenoviruses for up to 15 days, suggesting the potential for cancer therapy [131, 132].  

A summary of in vivo biocompatibility studies conducted on elastin-mimetic proteins is 

presented in Table 2-6.  

The evaluation of in vivo biocompatibility is largely based on characterizing local 

tissue responses to subcutaneously implanted materials where the intensity and duration 

of inflammation and wound healing, including capsule formation, is evaluated 

histologically [133, 134].  Although histological studies of biopolymers containing elastin-

mimetic sequences have previously noted the presence of ‘mild inflammation’ [121, 122] 

and ‘a reaction that was limited to a typical cell mediated response to the presence of a 

foreign body’, the extent of fibrous capsule formation has not been reported [129].  

Fibrous capsule thickness has been investigated for a variety of polymeric and ceramic 

implants designed for tissue repair, cell encapsulation, or as drug delivery systems [135-

138].  Capsule thicknesses are dependent on implant site and material type and typically 

varies between 2 and 150 µm over implantation periods of one to three months.  For 

example, greater capsule thickness has been observed for materials within 

intraperitoneal sites compared to those in subcutaneous sites over identical implant 

durations [136].  As an illustration of the effects of surface chemistry, implants comprised 

of poly(alkyl methacrylate) (PAMA) with short alkyl side chains exhibited a thicker fibrous 

capsule than those with long side chains (140 µm vs 120 µm) [135].   Additionally, self-

assembled monolayers (SAMs) of alkanethiols on gold with different terminal functional 

groups displayed surface dependent inflammatory responses after one week with 

extremely hydrophobic methyl terminated surfaces inducing thick fibrous capsules (130 

µm) and higher recruitment of inflammatory cells compared to hydrophilic COOH- and 

OH- terminated surfaces (80 µm and 70 µm, respectively) [139].  Likewise, 
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functionalized polypropylene implants revealed similar foreign body reactions to surface 

modifications, with –OH surfaces triggering a stronger response (~100 µm) compared to 

–COOH rich surfaces (37 µm ) [140].  In contrast, surface topography does not appear to 

have a significant effect on capsule thickness, although it may influence local 

inflammatory responses [141].   In this report, there were no observable differences in 

biological responses for either chemically crosslinked triblock elastin-mimetic protein 

polymer.  Both R4 and LysB10 implants initiated limited local inflammatory activity and 

displayed relatively thin fibrous capsules. 
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Figure 9. FACS analysis of peritoneal implanted LysB10 and R4 cylindrical hydrogels one week post-implant (n=5 for each 
group).  Experimental groups showed no statistical difference in cell number from normal and sham control groups. 

 

 

 

 

 

 
Figure 2-9. FACS analysis of peritoneal implanted LysB10 and R4 cylindrical hydrogels one week post-implant (n=5 for each group).  
Experimental groups showed no statistical difference in cell number from normal and sham control groups
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Figure 2-10. Histological analysis of three subcutaneous LysB10 implants retrieved 3 weeks post-implant.  (A) H&E staining of 
formalin fixed, paraffin embedded subcutaneous LysB10 implants demonstrates the presence of a mild foreign body reaction along 
the periphery of the sample.  (B)  F4/80 staining of formalin fixed, paraffin embedded subcutaneous LysB10 implants demonstrate 
the presence of macrophages along the periphery of the fibrous capsule but no infiltration into the LysB10 implant.  Histological 
analysis of peritoneal LysB10 implants retrieved 1 week post-implant.  (C)  H&E staining demonstrates the presence of a mild 
foreign body reaction along the periphery of the peritoneal LysB10 implant .  (D)  F4/80 staining the presence of macrophages along 
the periphery of the fibrous capsule but no infiltration into the peritoneal LysB10 implant.  Images are oriented so that the LysB10 
gel is located in the bottom right corner.  
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Figure 2-11. Histological analysis of three subcutaneous R4 implants retrieved 3 weeks post-implant.  (A) H&E staining of formalin 
fixed, paraffin embedded subcutaneous R4 implants demonstrates the presence of a mild foreign body reaction along the periphery 
of the sample.  (B)  F4/80 staining of formalin fixed, paraffin embedded subcutaneous R4 implants demonstrate the presence of 
macrophages along the periphery of the fibrous capsule but no infiltration into the R4 implant.  Histological analysis of peritoneal R4 
implants retrieved 1 week post-implant.  (C)  H&E staining demonstrates the presence of a mild foreign body reaction along the 
periphery of the peritoneal R4 implant .  (D)  F4/80 staining the presence of macrophages along the periphery of the fibrous capsule 
but no infiltration into the peritoneal R4 implant.  Images are oriented so that the R4 gel is located in the bottom right corner.  
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2.4 Conclusions 

A new class of recombinant elastin-mimetic protein polymer has been designed 

that is capable of both physical and chemical crosslinking.  We have demonstrated that 

chemical crosslinking provides an independent mechanism for control of protein 

mechanical responses.  Specifically, elastic modulus can be enhanced and creep strain 

reduced through the addition of chemical crosslinking sites.  Additionally, we have 

demonstrated exceptional biocompatibility of gluteraldehyde treated multiblock systems.  

By chemically locking a multiblock protein assembly in place, unique structures and 

morphologies are preserved and stabilized, which provides the capacity to modulate a 

wide range of functional responses, such as mechanical behaviors, permeability, and 

drug elution characteristics.  We anticipate that these materials will find utility in a 

number of vascular and non-vascular biomedical applications. 
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CHAPTER 3 

Biocompatibility of Recombinant Elastin-Mimetic Proteins 

 

3.1 INTRODUCTION 

Elastin-based protein polymers, genetically engineered with or without cell 

binding motifs, crosslinking domains, or non-natural amino acids, represent a promising 

new class of biomaterial [86, 102, 107, 142, 143].  Their capacity to be processed as 

gels [2-4], films [5, 6], or nanofibers [1, 103]  demonstrate the versatility of these 

recombinant proteins with potential applications in drug delivery [2, 144-146], tissue 

engineering [86, 147-149], or as constituents of implanted medical devices [7, 125].   

The majority of these proteins have been examined as covalently crosslinked networks 

[91-103]. 

Recently, we have reported the synthesis of amphiphilic elastin-mimetic protein 

polymers composed of complex block sequences that self-assemble through the 

formation of robust physical crosslinks [1, 4, 5, 150].  The biosynthetic scheme for 

generating self-assembling recombinant proteins has been based upon a convergent 

strategy for integrating multiple blocks of concatemerized DNA cassettes by sequential 

ligation [1, 2, 98].  To date, this strategy has been used to design diblock, triblock, and 

tetrablock copolymers ranging from 100 to 200 kDa in molecular weight [1, 4-7, 84, 150].  

The segregation of protein blocks into compositionally, structurally, and spatially distinct 

domains affords ordered structures on the nanometer to micrometer size range. 

Significantly, protein polymers that are structurally polymorphic display tunable 

mechanical, chemical, and biological properties [1, 4, 5, 150]. 

We have recently synthesized a triblock copolymer, designated B9, that contains 

identical hydrophobic endblocks with [(IPAVG)4(VPAVG)] repeat sequences, separated 

by a central hydrophilic block with repeating units of [(VPGVG)2(VPGEG)(VPGVG)2] [2].  
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Phase behavior and mechanical properties of elastin-mimetic polypeptides are critically 

dependent on the identity of the residues within the pentapeptide repeat unit Val/Ile-Pro-

Xaa-Yaa-Gly.  Yaa modulates the coacervation or inverse transition temperature (Tt) in 

water in a manner commensurate with the polarity of the amino acid side chain and 

polymer-solvent interactions.  Substitution of Ala for Gly in the third position of the repeat 

results in a change in mechanical response from elastic to plastic [151].  Thus, the 

midblock of B9 displays elastic-like behavior with spectroscopic features consistent with 

structural conformations of native elastin, including a highly mobile backbone, β-turns, 

and a loose helical β-spiral.  The presence of glutamic acid in the midblock raises the 

inverse transition temperature, preventing coacervation of the midblock over a 

temperature range exceeding 75°C [152, 153]. Nonetheless, these protein polymers 

reversibly self-assemble from concentrated aqueous solution above the Tt of the 

hydrophobic endblocks (~18°C) to form a stable, water solvated, interlocking network.  

Two-dimensional Fourier transform infrared (FTIR) spectroscopy reveals that above the 

Tt, endblock secondary structure changes from helix to sheet with the assembly of 

physical crosslinks [84].  Due to the presence of Ala in the third position of the 

pentapeptide repeat, the hydrophobic endblocks form relatively rigid domains that 

display plastic-like behavior.  Prior investigations from our group have confirmed robust 

viscoelastic and mechanical responses for this, as well as for other related elastin-

mimetic triblock copolymers [1, 4-6].    

In vivo studies have demonstrated excellent blood contacting properties in a 

primate arteriovenous shunt model when the triblock copolymer, B9, is coated as a thin 

film on the lumen of a small diameter vascular graft [7].  However, long-term 

biocompatibility and biostability for any of the members of this new class of physically 

crosslinked protein-based material has yet to be fully defined.  Indeed, it is possible that 

amphiphilic protein hydrogels would display significant in vivo instability, given the 
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existence of naturally occurring amphiphiles in biological fluids, such as phospholipids, 

glycolipids, and lipoproteins [154]. Such amphiphiles could act as surfactants 

destabilizing the virtual crosslinks of protein-based material whose structural integrity is 

based on the association of hydrophobic domains [155, 156].  While structural instability 

may be acceptable for biodegradable systems, it has the potential to severely limit the 

longevity of biomaterials whose integrity is related to hydrophobic interactions.  Many 

non-covalently crosslinked self-assembled systems, such as amphiphilic peptides, 

lipopeptides, or glycolipids that form thin films or fiber networks are useful for drug 

delivery where the half-life of the system is on the order of hours.  In general, none of 

these approaches demonstrate stability beyond a few days [157-161].   

We report herein that a virtually crosslinked elastin-mimetic triblock copolymer 

exhibits exceptional biocompatibility and long-term biostability over a period of at least 

seven months.  In conducting these studies, we have employed magnetic resonance 

imaging (MRI) as a noninvasive tool to provide real-time structural information for both 

the implant and surrounding tissue, as well as insight into degradation behavior [162-

164]. To our knowledge, this is the first evidence of a non-chemically or ionically 

crosslinked protein polymer system that exhibits long-term stability in vivo. 
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3.2 MATERIALS and METHODS 

Synthesis and purification of the elastin-mimetic triblock copolymer B9.  

The recombinant protein polymer B9 was derived from concatemerization 

of elastin-mimetic peptide sequences, as previously described [2].  The structure 

consists of an ABA triblock where: 

A block:  VPAVG[(IPAVG)4(VPAVG)]16IPAVG 

B block: VPGVG[(VPGVG)2VPGEG(VPGVG)2]48VPGVG. 

Individual colonies of B9 in pET24-a in E. coli strain BL21 (DE3) were used to inoculate 

30 mL of Circle Grow liquid media (Q-BIOgene) supplemented with the antibiotic 

kanamycin (50 µg/mL) and grown overnight at 37°C with shaking.  A total of 5% vol/vol 

of the overnight culture was used to inoculate large expression flasks containing 500 mL 

Circle Grow media and antibiotic, followed by a 24 hour expression at 37°C with shaking. 

Cells were harvested through centrifugation in sterile tubes at 1660 RCF for 20 

minutes at 4°C.  The supernatant was carefully decanted, cell pellets were resuspended 

in cold, sterile phosphate buffered saline (PBS) (20 mL per large culture flask pellet) and 

frozen at -80°C.   Three freeze (-80°C) / thaw (25°C) cycles were employed for the initial 

cell fracture with equilibration back to cold temperatures following the cycles.  Once cells 

were completely resuspended, six cycles of sonication, consisting of 20 second pulses 

with 20 seconds between each pulse in an ice bath, was employed to thoroughly break 

the cells.  To recover any unbroken cells, a preparative centrifugation step was used at 

1660 RCF for 10 minutes at 4°C.  Unbroken cells, which pelleted out during the spin, 

were resuspended in cold, sterile PBS and re-sonicated, as described above.   

 The cold cell lysate was centrifuged at 20,000g for 40 minutes at 4°C.  The 

supernatant was transferred to a cold, sterile tube and poly(ethyleneimine) (PEI) was 

added to a final concentration of 0.5%.  This solution was centrifuged again at 20,000g 

for 40 minutes at 4°C to remove all nucleic acids and contaminating cellular material 
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precipitated by the PEI.  The supernatant was transferred to new sterile 50 mL Falcon 

tubes and NaCl was added to a final concentration of 2M.  The elastin-mimetic protein 

was salted out of solution at 25°C for 30-45 minutes.  This solution was centrifuged at 

9500g for 15 minutes at 25°C to recover the protein product (‘hot-spin’).  The 

supernatant was discarded and the protein pellet was resuspended in cold, sterile PBS 

on ice for up to 10-20 minutes to avoid solubilizing unwanted contaminates.  The 

resuspended solution was then subjected to a ‘cold spin’ at 20,000g for 40 minutes at 

4°C.  The supernatant was transferred to sterile 50 mL tubes and salting precipitation 

repeated.  The hot (25°C) / cold (4°C) spin cycles were repeated until a contaminating 

pellet was no longer observed after the cold spin.  Typically, 6-10 cycles were required 

followed by a hot spin.   

For in vivo studies, B9 underwent a secondary treatment with sodium hydroxide 

The protein pellet was resuspended in cold, sterile PBS at approximately 50 mg per 20 

mL.  Sterile sodium hydroxide was added to a final concentration of 0.4N and mixed 

gently by hand.  The mixture was incubated on ice for fifteen minutes, after which 5M 

sodium chloride was added to a final concentration of 2M.  The protein was precipitated 

from solution at 25°C, centrifuged at 8500g for 20 minutes at 25°C, and resuspended in 

cold PBS.  This treatment was repeated three times.  Following the third treatment, the 

protein solution was adjusted to pH 6-8.  A cold spin was performed at 20,000 rpm for 40 

minutes at 4°C and the supernatant was desalted using a PD-10 desalting column (GE 

Healthcare Lifesciences) with molecular grade water (Cellgro).  The end product was 

passed through 0.2 µm filter, eluted into autoclaved Lyoguard freeze drying trays (Gore), 

frozen at -80°C, and lyophilized.  This procedure afforded B9 as a white fibrous protein 

product with isolated yields of 50 mg/L of expression culture.   
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 Lyophilized B9 was resuspended in sterile molecular grade water at 1 mg/mL 

and endotoxin levels were assessed using the Limulus Amoebocyte Lysate (LAL) assay 

(Cambrex).  Levels of endotoxin were typically 0.1 EU/mg (1 EU = 100 pg of endotoxin).  

  

Structural characterization of the elastin-mimetic triblock copolymer B9.    

Gel electrophoresis.  Protein size and purity was assessed by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE).  A total of 10 µg of the elastin-mimetic 

polypeptide was run on a 7.5% gel along with Precision Plus Protein Kaleidoscope (Bio-

Rad) molecular weight markers and negatively stained with Copper (Bio-Rad).  MALDI-

TOF mass spectrometry characterized a 165 kDa protein and the sequence was 

confirmed by amino acid compositional analysis [4].   

 Rheological analysis of concentrated B9 solutions.  Rheological data were 

acquired on an Advanced Rheological Expansion System III rheometer (ARES III, TA 

instrument, NJ) in parallel plate geometry with a plate diameter of 25 mm.  The testing 

protocol for rheological analysis has been detailed elsewhere [1].  In brief, protein 

solutions were prepared at 100 mg/mL by adding distilled, deionized water to lyophilized 

protein at 4°C, shaking the solution for 48 h, and then allowing the solution to equilibrate 

for 72 h.  The gap between parallel plates was adjusted between 0.2 - 0.35 mm and 

dynamic mechanical experiments were performed in shear deformation mode.  The 

gelation temperature was determined by heating samples from 4°C to 37°C at a rate of 

1°C per minute.  Experiments were repeated on three samples and representative data 

presented. 

In vivo biocompatibility of the elastin-mimetic triblock copolymer B9.  

Subcutaneous injection.  According to a protocol approved by Emory University 

Institutional Animal Care and Use Committee (IACUC), B9 protein solutions were 

injected into the subcutaneous space of 8 week old inbred male C57BL/6 mice weighing 
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25–30 g obtained from Jackson Laboratory (Bar Harbor, ME).  Mice were sedated using 

ketamine (95 mg/kg, IM) and xylazine (5 mg/kg, IM).  A total of 200 µL of 100 mg/mL 

solution of endotoxin free B9 was injected into the interstitial fascia where it immediately 

gelled.  A set of three mice each received a single injection.  All injections were 

conducted in the cold room using chilled syringes, needles, and solutions.  Mice were 

immediately warmed following the injection.  Three weeks post implantation, mice were 

sacrificed and the hydrogel explanted along with overlying skin.   

Peritoneal injection.  According to a protocol approved by Emory University 

Institutional Animal Care and Use Committee (IACUC), B9 protein solutions were 

injected into the peritoneal cavity of 8 week old inbred male C57BL/6 mice weighing 25–

30 g obtained from Jackson Laboratory (Bar Harbor, ME).  Mice were sedated using 

ketamine (95 mg/kg, IM) and xylazine (5 mg/kg, IM) prior to protein injections.  A total of 

200 µL of 100mg/mL solution of endotoxin free B9 was injected into the peritoneal cavity 

where it immediately gelled.  A set of five mice each received a single injection.  All 

injections were conducted in the cold room using chilled syringes, needles, and 

solutions.  Mice were immediately warmed following the injection.  One week post 

implantation, mice were sacrificed, and free cells in the peritoneal cavity were harvested 

by saline lavage, as detailed below, for FACS analysis prior harvesting the hydrogel for 

histological assessment.  

Histological examination.  Retrieved hydrogel samples were processed for 

histological and immunohistochemical evaluation to facilitate identification of cell types 

present.  All samples were fixed overnight in 10% neutral buffered formalin and 

processed for parafin embedding.  Sections were prepared at a thickness of 5 µm and 

stained with hematoxylin and eosin (H&E) or rat anti-mouse monoclonal F4/80 (CI:A3-1, 

Abcam) for infiltrating macrophages.  In all cases, multiple sections for each of three to 

five samples were examined.    
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Fluorescent-activated cell sorting (FACS) of peritoneal lavage.   Prior to 

harvesting implants, each peritoneal cavity was initially lavaged with 10 mL of cold 

Hank’s Balanced Salt Solution containing 10 U/mL heparin and 1% BSA (Mediatech, 

Inc).  Typically, 6 to 7 mL of lavage solution was retrieved and cells immunostained for 

flow cytometry with PE-conjugated rat monoclonal anti-mouse CD11b for macrophage, 

FITC-conjugated hamster anti-mouse CD3 for total T cells, FITC-conjugated rat 

monoclonal anti-mouse CD4 for helper T cells, FITC-conjugated rat monoclonal anti-

mouse CD8 for cytotoxic T cells, FITC-conjugated rat monoclonal anti-mouse CD19 for 

B cells, and FITC-conjugated rat monoclonal anti-mouse Gr-1 for neutrophils (BD 

Biosciences Pharmingen).  Antibodies were diluted in staining buffer (PBS pH 7.4 

containing 1% BSA and 0.1% sodium azide) to 1 µg/50 µL/106 cells, incubated with cells 

for 30 minutes in the dark on ice, washed three times in staining buffer, and fixed in 1% 

paraformaldehyde.  Analysis was performed on a FACScan using Cellquest (Becton 

Dickinson) and FlowJo software (Tree Star) [112].  Comparison between groups was 

analyzed via a Student’s t-test and p < 0.05 were considered to be significant.  Results 

are presented as mean ± SEM. The control group employed did not undergo surgery.   

At least five mice were enrolled in each experimental and control group. 

 

Non-invasive assessment of protein polymer implants in vivo.  Fabrication 

of cylindrical protein polymer implants.  A cold solution of B9 at 100 mg/mL was drawn 

into a chilled 1 mL syringe (Becton Dickenson), equilibrated at 4°C for 30 minutes, and 

subsequently geled at 37°C. The tip of the syringe was removed with a sterile scalpel 

and the molded protein gel extruded into room temperature PBS, equilibrated overnight 

under a bio-hood, and then sectioned into 8 x 4.76 mm cylindrical test samples (Figure 

3-1). 
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Figure 3-1.  Syringe casting method for B9 hydrogel implants.  (A) 10wt% B9 
solution was drawn into syringe and allowed to gel at room temperature.  (B)  
End of syringe was removed.  (C)  B9 hydrogel was ejected from syringe into 
room temperature PBS.  (D)  Ejected sample equilibrated in PBS.  This sample 
was sectioned into 8mm implants. 
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 In vivo biostability.  All animal experiments were approved by the Institutional 

Animal Care and Use Committee (IACUC) at Emory University.  Eight-week-old inbred 

male C57BL/6 mice weighing 25–30 g were obtained from Jackson Laboratory (Bar 

Harbor, ME).  Under ketamine (95 mg/kg, IM) and xylazine (5 mg/kg, IM) anesthesia, a 1 

cm dorsal midline incision was performed and bilateral cylindrical gels implanted in the 

subcutaneous space, parallel to the spine.  Eight mice were enrolled and serial MR 

imaging performed weekly for 6 weeks and every other week thereafter.  During 

scanning, 2.5% isoflurane inhalation was utilized for induction followed by 1.8% 

isoflurane throughout the duration of imaging.  Total scan time for each animal was less 

than one hour.  At the termination of the study, all mice were sacrificed and samples with 

surrounding tissue harvested for immunohistochemical analysis.   

1H Magnetic Resonance Imaging.  MR imaging was performed using a 

Varian/Inova 4.7T horizontal bore magnet operating at 200.56 MHz (Varian, Inc).  The 

magnet was equipped with an 11.7 cm inner diameter shelf-shielded gradient system 

with a maximum gradient strength of 25 gauss/cm.  Constructs implanted in mice were 

investigated using transmit/receive 16-element quadrature birdcage coil with an inner 

diameter of 3.8 cm.  Each anesthetized mouse was secured in a home-built cradle and 

the implant centered within the magnetic field.   

Exact positioning of the construct was determined using several fast-spin echo 

scout scans.  A final high resolution fast-spin echo image (relaxation time, TR = 2.0 sec, 

echo spacing, esp = 14 µs at number of averages, nt = 2) was collected to provide a 

more detailed image of the construct structure and surrounding microenvironment.  A 

fast-spin echo sequence with an echo train length (ETL) of 8 was utilized, which afforded 

a field of view of 3.5 x 3.5 cm with a slice thickness of 0.5 mm (Figure 3-2).  
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Figure 3-2.  A.  A coronal view through the C57BL/6 mouse showing the location of the implant.  Image is oriented with the mouse 
vertical.  The green lines shown are the planing of the 23 transverse-oblique slices through the implant.  B. MR scan slices through 
implant.  C.  Transverse MR image of the subcutaneous B9 implant.  The light region on the outer surface is a cross section of the 
B9 implant.  Implant areas were assessed from individual images and summed to assess volume of the implant.  Slice thickness of 
the scan is 500 µm. (V = verterbra, M = Psoas Major muscle, I = Intestine cross-sections, B9 = cross-section of B9 implant). 
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Characteristically, transverse images of each implant consisted of 23 slices at a 

thickness of 500 µm.  The acquired data contained 256 x 256 points and was zero filled 

to 512 points in both the read and phase encoded directions.  A 2-D Fourier 

transformation was performed, which provided a final in-plane resolution of 68 x 68 µm 

with a slice thickness of 500 µm (Figure 3-3).  Cross-sectiomal area and length 

measurements were made using the image processing program, Image J (NIH).   

 

 

 
 
Figure 3-3.  Transverse MR images of the subcutaneous B9 implant.  The light region 
on the outer surface is the cross section of B9 implant.  Slice thickness is 500 µm. 
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3.3 RESULTS  

Characterization of B9.  Gel electrophoresis of B9 revealed a single band at 

170 kDa consistent with prior studies from our laboratory (Figure 3-4A) [1, 4, 7]. 

Likewise, rheological behavior of aqueous solutions of B9 was unchanged after NaOH 

treatment with an observed sol-gel transition at 18°C.   The gel point of protein solutions 

can be detected by measurement of the shear storage (G’) and loss (G”) modulus as a 

function of temperature at a fixed frequency.  Above 18°C, G’ and G” increased while tan 

δ (G’/G”) decreased, consistent with the formation of a viscoelastic gel (Figure 3-4B).  

Biocompatibility of injectable protein polymer gels.  To assess in vivo 

responses to B9 hydrogels, protein solutions were injected into either the subcutaneous 

space (Figure 5) or the peritoneal cavity in a mouse model.  Peritoneal samples were 

retrieved one week after implantation and subcutaneous samples explanted at three 

weeks.  Retrieved hydrogel samples were irregularly shaped, but optically transparent. 

Hematoxylin and eosin staining demonstrates the presence of a mild foreign body 

reaction for B9 implants by the formation of a very thin fibrous capsule surrounding the 

implant.  Observed capsule thickness was 35.75 ± 6.14 µm for subcutaneous specimens 

and 16.42 ± 2.85 µm for peritoneal samples without evident cellular infiltration into 

implants in either subcutaneous and peritoneal locations.  Scattered macrophages were 

noted along the periphery of the fibrous capsule consistent with a mild foreign body 

response (Figure 3-6 and 3-7).  The magnitude and type of peritoneal cell response 

harvested, as determined by an analysis of saline lavage, did not reveal significant 

differences between those mice receiving B9 and control non-treated mice (Figure 3-8).   
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Figure 3-4.  Structural Characterization of the B9 protein.  A.  Sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed a single 
protein band at 170 KDa corresponding to B9.  10ug of the elastin-mimetic polypeptide 
was run on 7.5% gel and negatively stained with Copper stain (Bio-Rad). Molecular 
weight markers were Precision Plus Protein Kaleidoscope (Bio-Rad).  B.  Rheological 
behavior of 10 weight percent B9 in water. Dynamic shear storage (G′) and loss modulus 
(G″) are plotted as a function of temperature (γ 2%, ω 1Hz).  The gelation temperature 
was determined by heating samples from 4°C to 37°C at a rate of 1°C per minute.  
Experiments were repeated on 3 samples and representative data presented. 
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Figure 3-5. Subcutaneous injection mouse model.  200 uL of a 10 weight percent 
solution of B9 was injected subcutaneously, which gelled instantly.  A group of samples 
were retrieved three weeks for histology. 
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Figure 3-6. H&E staining of formalin fixed, paraffin embedded B9 implants demonstrates 
the presence of a mild foreign body reaction along the periphery of the sample.  
Histological analysis of subcutaneous B9 implants retrieved 3 weeks post-implant, skin 
side (A) and muscle side (B).  Histological analysis of peritoneal B9 implants retrieved 1 
week post-implant (C).  All images were obtained at 20X magnification and are oriented 
such that the B9 hydrogel is located in the bottom right corner.   
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Figure 3-7. F4/80 staining of formalin fixed, paraffin embedded B9 implants demonstrate 
the presence of macrophages along the periphery of the fibrous capsule but no 
infiltration into the B9 implant.  Histological analysis of subcutaneous B9 implants 
retrieved 3 weeks post-implant  (A) and peritoneal B9 implants retrieved 1 week post-
implant (B).  All images were obtained at 20X magnification and are oriented such that 
the B9 hydrogel is located in the bottom right corner.   
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Figure 3-8.  FACS analysis of peritoneal implanted B9 1 week post-implant (n=5).  
Experimental group showed no statistical difference in cell number from control group, p 
< 0.05.  Cells were immunostained for flow cytometry with FITC-conjugated hamster 
anti-mouse CD3 for total T cells, FITC-conjugated rat monoclonal anti-mouse CD4 for 
helper T cells, FITC-conjugated rat monoclonal anti-mouse CD8 for cytotoxic T cells, 
FITC-conjugated rat monoclonal anti-mouse CD19 for B cells, PE-conjugated rat 
monoclonal anti-mouse CD11b for macrophage, and FITC-conjugated rat monoclonal 
anti-mouse Gr-1 for neutrophils (BD Biosciences Pharmingen). 
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Noninvasive in vivo monitoring of implanted protein gels.  MR imaging 

provides a useful means for in situ characterization of implanted biomaterials.  Adequate 

contrast was achieved between the implant and surrounding tissue, which reflected the 

high water content of the protein gel (Figure 3-2 and 3-3).  Implant cross sectional areas 

and lengths were assessed through analysis image analysis over 7 months and data is 

currently being compiled (Figure 3-9).  No evidence of calcification was observed. 
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Figure 3-9.  Biostability of B9 implants assessed by MRI.  Implant cross-sectional 
areas and lenths were obtained through image analysis over 7 months and data is 
currently being compiled.  Four month biostability data is presented in this figure.
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3.4 DISCUSSION  

Molecular self-assembly is ubiquitous in nature and has recently been exploited 

for biomaterial design.  Self-assembly is mediated by a number of weak, noncovalent 

bonds, including hydrogen bonding, as well as electrostatic, hydrophobic, and van der 

Waals interactions ultimately forming higher order structures.  One such example of 

natural molecular self-assembly is tropoelastin which coacervates to align tropoelastin 

molecules in preparation for intermolecular crosslinking [63-65].  At ambient 

temperatures, tropoelastin is soluble in aqueous solutions, however, as the temperature 

is raised, molecular aggregation occurs through hydrophobic interactions.  Coacervation 

is a lower critical solution temperature (LCST) phenomenon in which the protein forms a 

more ordered system upon increasing temperature.  The same phenomena has been 

observed with recombinant elastin proteins where precise control over the temperature 

at which coacervation occurs has been correlated with amino acid sequence [66, 67]  

and exploited for tunable control over the assembly process.   

Tissue-material responses, including the rate and extent of biodegradation, are 

integral to assessing the suitability of elastin-like biopolymers for implant related 

applications.  To date, reports documenting in vivo responses to elastin-mimetic protein 

implants have been limited; largely confined to several studies performed 15 to 20 years 

ago on proteins synthesized chemically and subject to radiation crosslinking [82, 121]  In 

these investigations, homopolymers or copolymers composed of VPGVG, VPGKG, 

VPGEG, IPAVG, and VPAVG reportedly did not induce significant inflammatory or 

allergic reactions [82, 121-123].  The most thoroughly characterized variant, chemically 

synthesized poly(GVGVP), underwent in vitro toxicity and mutagenicity assays and was 

administered via intravenous, intraocular, intramuscular, intraperitoneal, and 

subcutaneous routes without toxic effect [82, 121].  A fibrous capsule was noted three 

weeks after intramuscular implantation of a radiation crosslinked sample [82].  In a more 
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recent report, elastin microparticles prepared from chemically synthesized poly(VPAVG) 

were evaluated following subcutaneous and intravitreal injections.  No inflammatory 

response observed after 28 days.  However, tractional retinal detachment noted [122].  

The failure to detect an immune mediated reaction to these polymers is consistent with 

other studies that have sought to identify potentially immunogenic epitopes on native 

elastin.  While polyclonal and monoclonal antibodies can be raised against peptides 

derived from the hydrolysis of native elastin, neither VPGVG nor VPAVG peptides were 

among the recognized sequences [124].  Moreover, VPGVG peptides were unable to 

competitively inhibit the binding of any of the antibodies raised against native elastin, 

which further supports the notion that this pentapeptide is not present among antigenic 

elastin epitopes [124]. 

Recently, genetically engineered elastin-mimetic protein polymers have been 

investigated in vivo as non-thrombogenic coatings [7, 125], targeted drug delivery 

vehicles [126-128], and as an implantable material [129].  In the latter instance, after a 

13 week implant period in the subcutaneous space, recombinant human tropoelastin 

‘sponges’, chemically crosslinked with with bis(sulfosuccinimidyl) suberate were 

surrounded by a fibrous capsule with a minimal to moderate inflammatory response 

[129].  Non-chemically crosslinked recombinant elastin-like proteins have also been 

administered within the intra-articular space as a 650 µM protein solution.  Although the 

biological response was not evaluated, this study revealed a three hour half-life for non-

aggregating VPGVG proteins and a three day half-life for aggregating VPGXG proteins, 

where X = V:G:A at a ratio of 1:7:8 [128].  As a related material, a 47 kDa recombinant 

silk-elastin-like protein (SELP), comprised of GAGAS silk-like [S] and GVGVP elastin-

like [E] amino acid sequences ([S]4[E]4[EK][E]3) has been studied after injection into the 

subcutaneous space.  Histological analysis revealed minimal fibrous encapsulation after 

four weeks with a mild degree of inflammation that included the presence of 
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macrophages in the surrounding tissue [130].  SELPs have also been used for 

adenoviral gene delivery and demonstrate prolonged and localized expression of 

adenoviruses for up to 15 days, suggesting the potential for cancer gene therapy [131, 

132].  A summary of in vivo biocompatibility studies conducted on elastin- mimetic 

proteins is presented in Table 3-1.  

The evaluation of in vivo biocompatibility has largely been based on 

characterizing local tissue responses to subcutaneously implanted materials where the 

intensity and duration of the inflammation and wound healing, including capsule 

formation, is evaluated histologically [133, 134].  Although histological studies of 

biopolymers containing elastin-mimetic sequences have previously noted the presence 

of ‘mild inflammation’ [121, 122] and ‘a reaction that was limited to a typical cell 

mediated response to the presence of a foreign body’ [129], the extent of fibrous capsule 

thickness has not been reported.  Fibrous capsule thickness has been investigated for a 

variety of polymeric and ceramic implants designed for tissue repair, cell encapsulation, 

or as drug delivery systems [135-138, 165].  Capsule thicknesses are dependent on 

implant site and material type and typically varies between 2 and 150 µm over 

implantation periods of one to three months.  For example, greater capsule thickness 

has been observed for materials within intraperitoneal sites compared to those in 

subcutaneous sites over identical implant durations [136].  Ceramic materials, aluminum 

calcium phosphate, hydroxyapatite, and tricalcium phosphate, appeared to invoke the 

mildest inflammatory response with the thinnest fibrous capsule, approximately 2.5 µm 

and 6 µm, after 90 day implant periods in the subcutanteous and peritoneal cavities, 

respectively [136].  As an illustration of the effects of surface chemistry, implants 

comprised of poly(alkyl methacrylate) (PAMA) with short alkyl side chains exhibited a 

thicker fibrous capsule than those with long side chains (140 µm vs 120 µm) [135].  

Additionally, self-assembled monolayers of alkanethiols on gold with different terminal 
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functional groups displayed surface dependent inflammatory responses after one week 

in subcutaneous tissue.  Hydrophobic methyl terminated surfaces induced thick fibrous 

capsules (130 µm) and greater recruitment of inflammatory cells, as compared to 

hydrophilic COOH- (80 µm) and OH- (70 µm) terminated surfaces [139].  Likewise, 

polypropylene implants whose surfaces were modified with –OH groups triggered 

formation of a thicker capsule  (~100 µm) that when modified with –COOH moeities (37 

µm) [140].  In contrast, surface topography does not appear to have a significant effect 

on capsule thickness, although it may influence local inflammatory responses [141].  

Relatively inert synthetic polymers, such as, silicone, and organic biopolymers, such as 

cellulose also elicit a foreign body reaction after subcutaneous implantation with an 

observed fibrous capsule thickness of approximately 90 µm and 80 µm, respectively, at 

four weeks. [165].  In this report, FACS analysis of peritoneal lavage fluid harvested one 

week after injection of B9 demonstrated no apparent difference in either the number or 

type of inflammatory cells when compared to those mice not exposed to the polymer gel 

(Figure 3-8). Significantly, as a subcutaneous implant, B9 protein polymer gels initiated 

only a limited local inflammatory response.  Remarkably, the resultant fibrous capsule is 

among the thinnest observed to date for non-ceramic implants in comparable implant 

sites and over similar periods of implantation.   This effect may be related to the 

presence of glutamic acid residues in the hydrophilic midblock that segregate to the 

surface with an enriched concentration of –COOH groups at material-tissue interface. 
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Table 3-1.  Biocompatibility evaluation of elastin-mimetic polypeptides   

Recombinant Elastin-Mimetic Assay Reported 
Results 

Testing Comments 

Chemically synthesized Poly (VPGVG) Ames 
mutagenicity test 

Non-
mutagenic 

Test samples were determined as innocuous as 
negative controls [121] 

Chemically synthesized Poly (VPGVG) Cytotoxicity-
agarose overlay 

Non-toxic No evidence of fibroblast cell death or lysis following 
incubation for 24 hours [121] 

Chemically synthesized Poly (VPGVG) Acute systemic 
toxicity 

Non-toxic No difference in IV injections of 24 hour extracts of 
gamma irradiated sheets of poly(VPGVG) and 
control extracts [121] 

Chemically synthesized Poly (VPGVG) Intracutaneous 
toxicity 

Non-toxic No erythema or edema was observed at injection 
site after 24, 48, and 72 hours [121] 

Chemically synthesized Poly (VPGVG) Muscle 
implantation 

Favorable at 7 
days 

Needle injection of film fragments, material was a 
‘slight irritant’ as compared to the negative control 
[121] 

Chemically synthesized Poly (VPGVG) Acute 
intraperitoneal 
toxicity 

Non-toxic at 4 
weeks 

Recovered implants were reported as ‘very similar 
to pre-implant condition’ [121] 

Chemically synthesized Poly (VPGVG) Systemic 
antigenicity study 

Non-antigenic No anaphylactic signs from IP injections three times 
a week, every other day, for 14 and 21 days [121] 

Chemically synthesized Poly (VPGVG) Dermal sensitation Non-
sensitizing at 7 
days 

Intradermal injections were challenged with 
solutions to provoke a mild acute inflammation at 
injection site, but ‘showed no significant evidence of 
causing dermal sensitization [121] 

Chemically synthesized Poly (VPGVG) Pyrogenicity Non-pyrogenic IV injection into rabbit ear vein and temperature of 
the animals were monitored [121] 
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Recombinant Elastin-Mimetic Assay Reported 
Results 

Testing Comments 

Chemically synthesized Poly (VPGVG) Lee White Clotting 
Study 

Normal 
clotting time 

Used canine blood, all clotting times were within 
normal ranges for dog [121] 

Chemically synthesized Poly (VPGVG) In vitro hemolysis 
test 

Non-hemolytic 0% hemolysis reported for rabbit blood determined 
spectrophotometrically [121] 

Chemically synthesized Poly (VPGVG) Bone implantation No 
calcification or 
ossification 

Fibrous granulation tissue, no calcification or 
ossification at 3 weeks [82] 

Chemically synthesized Poly (VPGVG) IM implantation No 
calcification or 
ossification 

Fibrous tissue capsule with a medium range of 
active phagocytic cell infiltration at muscle site with 
no evidence of calcification or ossification, reported 
as ‘passive tissue reaction similar to those found for 
biodegradable suture materials at three weeks [82] 

Microbially expressed triblock  Baboon 
arteriovenous 
shunt model 

Non-
thrombogenic 

Minimal fibrin and platelet deposition over a 1 hour 
time period of elastin-mimetic impregnated PTFE 
graft [7] 

Chemically synthesized Poly (VPAVG) Subcutaneous 
injection 

Non-
inflammatory 

Oedema was measured after microparticle injection 
at 24 hours in a hind paw injection model [122] 

Chemically synthesized Poly (VPAVG) Intraocular 
injection 

Non-
inflammatory 

28 days post-injection displayed minimal signs of 
inflammation, though tractional retinal detachment 
was observed with fibroblastic activity [122]  

Microbially expressed poly VPGVG 
(aggregating) and VPGAG (non-
aggregating) 

Intra-articular 
injection 

Biodegradable Protein remained in joint for 2 (non-aggregated 
protein) to 30 days (aggregated protein) [128] 

Microbially expressed human 
tropoelastin 

Subcutaneous 
implant 

Well tolerated Uniform encapsulation with minimal to moderate 
inflammation at 13 weeks [129] 
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Elastin-mimetic proteins such as B9 and other multiblock systems afford the 

ability to form physical or virtual crosslinked networks through the self-association of 

chemically similar domains.  In the case of elastin-mimetic proteins [1-5, 84], repeat 

peptide sequences of self-associating blocks are chosen, such that coacervation or 

phase separation of these domains occurs in water under physiologically relevant 

conditions (pH 7.4, 37°C), which maximizes hydrophobic interactions that drive self-

assembly.  In turn, the sequence of the non-crosslinking domain is selected in a manner 

that precludes coacervation.  This typically has required the incorporation of hydrophilic 

residues in the fourth position of the pentapeptide repeat sequence (Val-Pro-Gly-Xaa-

Gly), such as glutamic acid, which limits the tendency for block aggregation.   Physically 

crosslinked protein-based materials possess a number of advantages over their 

chemically crosslinked counterparts, including ease of processability, the ability to avoid 

the addition or removal of reagents or unreacted intermediates needed for chemical 

crosslinking, and the capacity to incorporate biologically or chemically active agents or 

cells that might otherwise be sensitive to covalent crosslinking schemes.  Moreover, if 

blocks are of sufficient size and chemical diversity the potential to access diverse 

polymer morphologies exists.  This provides the capacity to tune a wide range of 

functional responses, such as mechanical behavior, permeability or drug elution 

characteristics, as well as the potential to design templated materials [74, 86, 91].   

Most biomaterials whose integrity is based on self-association of hydrophobic 

constituents display short-lived stability in vivo and have been utilized for drug delivery or 

wound healing applications.  The instability of these systems can be attributed to natural 

surfactants, other amphiphilic molecules, or enzymes that promote lysis and solubulize 

specific lipids and proteins.  Table 3-2 summarizes the in vitro and in vivo stability of a 

number of physically crosslinked amphiphilic systems.  Phospholipids, lipopeptides, and 

glycolipids have been extensively employed as drug carriers when formulated as 
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vesicles, liposomes, or micelles, all of which have relatively short half-lives even when 

directly injected within tissues [166].  Similarly, amphiphilic graft copolymers, such as 

alkylated carrageenan [167], poly(2-hydroxyethyl methacrylate)-g-oligolactide, or 

poly(ethylene glycol)-g-poly(DL-lactic acid-co-glycolic acid) all degrade rapidly [168, 

169].  Recently, amphiphilic peptides that self-assemble as fibrous networks have been 

described as vehicles for cell and drug delivery [160, 170].  These systems display 

relatively rapid dissociative responses, as well.  In contrast, structures that self-associate 

through electrostatic interactions, including calcium or barium crosslinked alginate gels 

or alginate-polylysine thin films [171, 172], generally exhibit greater biostability.  

A number of materials that self-assembly also require additional crosslinking for 

biomedical applications.  Collagen has been used as a scaffold for tendon, cartilage, and 

bone regeneration [173-175], as well as for drug delivery [176] and skin substitutes 

[177].  However, most collagen systems are crosslinked by a variety of chemical [178-

181] or physical [182, 183] means.  In fact, non-crosslinked collagen displays a limited 

lifetime in vivo, with significant degradation observed within three to four weeks [129, 

184].   Natural silk is also degradable, but over longer durations with a >50% loss of 

strength at 6-12 weeks [185-187].  Likewise, recombinant tropoelastin has been 

fabricated into a chemically crosslinked ‘sponge’.   Degradation was evident 13 weeks 

after implantation when formulated with an open porous surface enabling cells to 

penetrate the implant, but limited when produced with a smooth surface [129].  Similarly, 

crosslinking and chemical modification has been employed to reduce degradation rates 

of hyaluronic acid hydrogels [188].  

 Significantly, this study demonstrates the long-term durability of a self-assembled 

elastin-mimetic protein polymer hydrogel, even in the absence of covalent crosslinks.  

MRI has been previously used to monitor biomaterial degradation and swelling behavior 

of a number of polymeric materials [162-164, 189-191], including hydrogels [189-194].  
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To our knowledge, these in vivo studies are the first to demonstrate that self-assembled 

protein-based materials of any form can be designed with structural stability approaching 

that displayed by many electrostatically or covalently crosslinked biopolymers.   
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Table 3-2.  Biostability in physically crosslinked systems 
 Application Biostability 
Crosslinked by hydrophobic interactions 
 
Hydrophobized 
polysaccharides, (eg, 
Dextran and Pullan) 

 

Drug delivery Dextran-4 hours-7 days [195, 196] 
Pullan-in vitro, 1 week [197] 

Leucine zipper motifs N/A 

In vitro chemical denaturation studies 
indicated incorporation of fluorinated 
amino acids improved stability [198]  
 

Silk Elastin-Like 
Proteins Drug delivery 

Stability controlled by the length of silk 
block, fewer silk blocks resorbed by 1 
week, more repeats (8 blocks) 
demonstrated no evidence of resorption 
at 7 weeks [199] 
Hydrogels investigated for drug release 
stable for >30 days [130] 
 

Natural Silk Sutures 6-12 weeks, with a >50% loss of strength 
[185, 186]  

Crosslinked by ionic interactions 

Alginate crosslinked with 
calcium ions 

 
Drug delivery and  
encapsulation  

2-12 weeks [172] 
 

Chitosan crosslinked 
with glycerol-phosphate 
disodium salt and heat 

Drug delivery 

Days-weeks dependent upon 
deacylation, with longer residence times 
observed with higher degree of 
deacylation [200] 

Carrageenan 
crosslinked with 
potassium ion or 
metallic ions 

Drug delivery 1-2 days [167] 

Alginate-PLL multilayers Coatings for 
implantable devices 

Stable as a film at 4 weeks with no 
observed cellular adhesion or defects 
[171] 
 

Crosslinked by crystallization 

PVA homopolymer 
 
Drug delivery 

 
stable at 37C in vitro for 6 months 
[201] 

poly (HEMA-g-
(L)oligolactate) and poly 
(HEMA-g-
(D)oligolactate) 

Drug delivery Stable for <70 days in vitro [168] 

PEG-PL(G)A-PEG 
triblock copolymers Drug delivery 

Partial degradation observed (PLGA 
backbone and PEG grafts) and 
complete degradation (PEG backbone 
with PLGA grafts) after 7 days [169] 
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3.5 CONCLUSIONS 

Elastin-based protein polymers are a promising class of material characterized 

by high degree of biocompatibility and a tunable range of mechanical properties from 

plastic to elastic.  A variety of options facilitate the processing of these biopolymers into 

gels, films, or nanofibers for any of a number of implant applications in orthopedics, as 

well as in plastics, cardiovascular, and general surgery.  Additionally, the potential exists 

for incorporating bioactive compounds onto the polymer backbone or within the protein 

matrix.  Likewise, such materials provide a prospective vehicle for cell delivery.  In this 

report we have characterized local tissue response and long-term in vivo biostability of a 

physically crosslinked recombinant elastin-mimetic copolymer.  We predict elastin-

mimetic triblock copolymers will find utility as structural components of artificial organs 

and engineered living tissues, as carriers for controlled drug release, or as biocompatible 

surface coatings.  



 

91 

CHAPTER 4 

Recombinant Elastin Protein Expression in Pichia pastoris 

 

4.1   INTRODUCTION 

Over the past decade a number of reports have described the design of synthetic 

genes, which encode elastin-like proteins (ELP) for bacterial expression in Escherichia 

coli.  Although advantages exist, significant limitations associated with E. coli expression 

systems have been noted.  The lack of eukaryotic post-translational systems, the 

insolubility of over-expressed mammalian proteins by sequestering into inclusion bodies, 

difficult purification from a pool of cytoplasmic proteins and cellular contaminants, and 

endotoxin contamination have encouraged the use of other expression systems 

including yeast, plant, insect, and mammalian cells.  Endotoxin has been a specific 

concern for ELP expression as it becomes associated with the protein product upon cell 

lysis.  Endotoxin, an amphiphillic lipopolysaccharide, is a toxic constituent found in the 

outer cell wall of gram-negative bacteria and known to induce pyrogenic pathologies 

[202].  A number of approaches have been utilized to reduce endotoxin contamination 

including sodium hydroxide digestion [203, 204], centrifugal ultrafiltration, phase 

separations with detergents [205-208] or solvents [209], neutralizing agents [210], and 

endotoxin selective absorber matrices [211] and membranes [212].  Removal of 

endotoxin from ELPs has often required one of these secondary purification treatments 

in addition to traditional purification through temperature induced precipitation, thereby, 

reducing overall protein yields.  

Recently, yeast and plant expression systems have been explored for the 

expression of ELPs and related matrix proteins.  For example, recombinant silk-elastin 
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proteins have been successfully expressed in tobacco and potato plants [213]. 

Additionally, the expression of a variety of target proteins in transgenic tobacco has been 

enhanced by an order of magnitude when fused to elastin-like polypeptides [214-216].  

Nonetheless, while transgenic plants offer the potential for scalability, reduced costs 

[217], and inherent biosafety through a reduced risk of viral or prion contamination [215], 

high yields have largely been limited to selected antibodies, enzymes, and vaccines 

[218].   The majority of recombinant proteins accumulate in only small amounts. 

As an alternate approach, yeast expression systems have become an increasingly 

attractive host for the expression of heterologous proteins [219, 220], due to their 

capacity to be incorporated into industrial-scale fermentation schemes characterized by 

high cell densities in relatively inexpensive media.  In addition, heterologous proteins 

have been efficiently secreted into the expression medium, resulting in low-cost recovery 

of the protein.  Significantly, endotoxin is not produced by yeast, thereby simplifying 

purification and sterilization strategies.  However, overall protein expression is influenced 

by two variables,  culture cell density and the amount of recombinant protein per cell 

[221] and as a consequence of the more complex process of protein production in a 

eukaryotic organism, yields are often low as compared to E. coli expression systems.  

Nonetheless, tropoelastin, collagen, and silk-like proteins have all been expressed in 

yeast with varying degrees of success [222-225]. 

In this report, a novel strategy was devised to construct a gene with enhanced 

sequence diversity that encodes a highly repetitive elastin-like protein polymer for 

expression in P. pastoris.  Traditionally, large repetitive genes that comprise most 

protein polymers have been created using a concatemerization strategy where a 

pentapeptide repeat cassette (monomer repeat unit) is self-ligated in a head-to-tail 

fashion [2, 98].  While this strategy has proven suitable for expression of elastin-like 

proteins in E. coli, the translation of repetitive gene sequence, especially in other host 



 

93 

systems, is often associated with reduced levels of protein expression.  Moreover, 

repetitive sequences are often prone to mutational events. Given these potential 

limitations, we designed a modified concatemerization strategy in which seven dissimilar 

monomer repeat units, encoding identical pentapeptide repeat sequences, served as a 

monomer library for the concatemerization reaction.  In this manner, a protein polymer 

gene was generated through random incorporation of distinct monomer repeat units.  

DNA monomers encoding identical amino acid sequences were synthesized in a manner 

that accounted for the preferred codon usage of P. pastoris, but in which the third 

nucleotide for proline, glycine and valine codons was degenerate.  Thus, 

concatamerization of the monomer library produced a genetically nonrepetitive DNA 

sequence for the pentapeptide repeat [(VPGVG)2VPGEG(VPGVG)2].  By limiting genetic 

repetition, the risk of genetic deletions, rearrangements, or premature termination errors 

during protein synthesis was minimized [220, 226, 227].  
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4.2   MATERIALS and METHODS 

Synthetic gene construction of Yeast ELP monomer library.  A collection of 

distinct single-stranded oligonucleotides corresponding to a monomer repeat unit was 

chemically synthesized (Sigma Genosys, Inc).  This was accomplished through use of 

degenerate bases incorporated into the design of the Yeast ELP coding sequence.  

Specifically, W encoded for A or T in proline and glycine and H for A, T, or C in valine.  

When chemically synthesized, equal molar amounts of the assigned nucleotides were 

used when synthesizing the degenerate position affording random incorporation of 

bases at those designated positions (Table 4-1B).  The lyophilized sequences were 

resuspended in elution buffer (10mM tris-HCl, pH 8.5) to a final concentration of 0.5 

µg/uL.  DNA Polymerase I Klenow fragment (New England Biolabs) was utilized in a 

primed extension of the oligonucleotide template for the second strand synthesis yielding 

the double stranded cassette of the monomer repeat unit.  An aliquot of the reaction 

mixture was analyzed via gel electrophoresis (4% GTG NuSieve, 1 X TBE buffer) to 

verify a single band corresponding to the size of the monomer repeat unit (~75bp).  

Subsequently, a preparative gel was used to isolate DNA and the corresponding band 

was purified via Amicon Ultrafree Centrifugal Filter Units (Millipore) and isolated via 

ethanol precipitation.  A total of 20 µg of the DNA cassette was digested with BamH I 

(10U/µg) and HinD III (10U/µg) restriction enzymes, extracted with phenol/chloroform, 

and isolated via ethanol precipitation.  
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Table 4-1.  Amino acid sequence and related nucleic acid coding sequence for the Yeast ELP 
gene in E. coli (A) and P. pastoris (B) expression systems.   

 
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 
GTA CCT GGT GTT GGC GTT CCG GGT GTT GGT GTA CCA GGC 
 
Glu Gly  Val Pro Gly  Val Gly Val Pro Gly Val Gly  
GAA GGT GTA CCG GGT GTT GGC GTA CCA GGC GTA GGC 
 
 
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 
GTT CCA GGW GTH GGW GTH CCW GGW GTH GGW GTH CCW    GGW 
 
Glu Gly  Val Pro Gly  Val Gly Val Pro Gly Val Gly  
GAA GGW GTH CCW GGW GTH GGW GTH CCW GGW GTH GGW  
 
 

A 

B 

 
A.  CCG is a high usage codon encoding proline in E. coli (24.5%), but extremely low in P. pastoris (3.9%) 
B.  Degenerate base W encodes for A or T while H encodes for A, T, or C (Sigma Genosys) 
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The pZErO-1 (Invitrogen) acceptor plasmid (1 µg) was prepared via BamH I and 

HinD III double digestion, followed by heat inactivation of the enzymes at 65°C and a 

dilution of the digested plasmid to 10ng/µL.  Yeast ELP monomers were designed with 

BamH I and HinD III overhangs to enable cloning into pZErO-1 at these restriction sites.  

The DNA cassettes and respective acceptor plasmids were ligated together in 

the presence of T4 DNA ligase (New England Biolabs) at 16°C for 30 minutes.  A 2 µL 

aliquot of the ligation reaction mixture was used to transform 40 µL of electrocompetent 

TOP10F’ E. coli cells (Invitrogen).  A total of 100 µL of the transformation mixture was 

spread onto low salt Luria Broth (LSLB) agar (5 g tryptone, 2.5 g yeast extract, 2.5 g 

NaCl, 7.5 g agar, 200 mL ddH2O, pH 7.5) supplemented with Zeocin (50 µg/µL).  The 

plates were incubated for 12 hours at 37°C.  Twenty transformants were selected from 

each plate to inoculate individual 7mL cultures of LSLB/Zeocin media.  Cultures were 

rotary incubated for 12 hours at 37°C.  Plasmid DNA was isolated following a Qiagen 

Spin Miniprep protocol (Quiagen, Inc.).  Miniprepped DNA was initially screened by a 

BamH I and HinD III double digestion.  Positive transformants were verified by agarose 

gel electrophoresis (4% GTG NuSieve agarose, 1X TBE buffer).  Automated DNA 

sequencing utilizing the M13 forward and M13 reverse primers confirmed correct and 

unique DNA products for seven separate monomer repeat unit cassettes, yielding the 

Yeast ELP monomer library (Table 4-2).
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A. Nucleic acid sequence of the seven unique Yeast ELP monomer units created using the wobble base system and employed in 
multimerization of the Yeast ELP gene. 

B.  Recognition (underlined) and cleavage sites (arrows) for restriction enzymes within the representative monomer, M1, repeat unit. 
C. Monomer repeat unit, M1, with cohesive ends generated from a Bbs I / BsmB I sequential digestion and used in the multimerization 

reaction.  Note that Bbs I / BsmB I are type II restriction enzymes and cleave the DNA downstream of their recognition sites. 
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Concatamerization of the Yeast ELP monomer library.  Concatamerization 

reactions utilized a total of 3.2 µg (0.4 µg of each monomer) of the Bbs I / BsmB I 

digested DNA.  Monomers were then ligated randomly end-to-end via T4 DNA ligase.  

The multimerization mixture was separated by size using agarose gel electrophoresis 

(1% agarose, 1 X TBE buffer) (Figure 4-2A).  Concatemers were excised in blocks, 

<500 bp, 500-1000 bp, 1000-3000 bp and purified using Zymoclean Gel DNA Recovery 

protocol (Zymo Research, Inc).  Concatamers of 1000-3000bp in size were ligated into 

the acceptor plasmid at the Bbs I site at 16°C for 16 hours.  The acceptor plasmid was 

prepared from the pZErO-1 plasmid containing a single monomer repeat unit, digested 

with Bbs I, and dephosphorylated with SAP (Shrimp Alkaline Phosphatase, Roache) to 

prevent self ligation.  Ligation mixtures were used to transform competent TOP10F’ cells 

and 100 µL of the transformation mixture was plated on LSLB/Zeocin agar plates.  DNA 

from positive clones were isolated via MacConnell automated miniprep and screened 

through double digestion using BamH I and HinD III restriction enzymes.  Clones of 

predetermined size (approximately 1.5 kB) were isolated and sequences confirmed with 

automated DNA sequencing.   

Construction of the modified pPICZα-A expression plasmid.  Single stranded 

oligonucleotides encoding the sense and anti-sense strands of the Yeast ELP adaptor 

were chemically synthesized (Sigma Genosys, Inc.) (Table 4-3).  The Yeast ELP 

adaptor is a ~50 bp DNA cassette designed to contain restriction enzyme cut sites 

midway through the cassette to allow for insertion of the Yeast ELP concatamer and 

allow for facile cloning into the pET24-a expression vector within the multiple cloning 

region.  This ensures correct insertion of the gene in frame with the N-terminal α-factor 

secretion signal sequence and the C-terminal polyhistidine tag and c-myc epitope.  The 

DNA was suspended in 10mM Tris buffer (pH 8) to a final concentration of 0.5 µg/µL.  A 
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solution of 10 µg of each corresponding oligonucleotide, 4 µL 5M NaCl, 4 µL 1M MgCl2, 

152 µL of sterile ddH2O was subjected to an annealing procedure initiated at a reaction 

temperature of 99°C with incremental temperature decrements of 1°C every 5 minutes to 

a final reaction temperature of 30°C.  The resultant double stranded DNA cassette was 

analyzed by agarose gel electrophoresis (4% GTG NuSieve agarose, 1X TBE buffer).  

Double stranded synthetic DNA was phosphorylated through a 2 hour incubation 

with T4 poynucleotide kinase (New England Biolabs) in the presence of T4 DNA ligase 

buffer with 10mM ATPs (New England Biolabs).  The enzymes were removed with 

phenol/chloroform/isoamyl alcohol (25:24:1) and the dsDNA was recovered through an 

ethanol precipitation.   

The pPICZα-A plasmid (1 µg, Invitrogen) was doubly digested with Xho I and 

Xba I, followed by heat inactivation of the enzymes at 65°C, and dilution to 10ng/µL.  

The adaptor was designed with Xho I and Xba I overhangs to enable its cloning into 

pPICZα-A.  Adaptor and plasmid were ligated together in the presence of T4 DNA ligase 

at 16°C for 30 minutes.  A 2 µL aliquot of the ligation reaction mixture was used to 

transform 40 µL of electrocompetent TOP10F’ E. coli cells.  A total of 100 µL of the 

transformation mixture was spread onto low salt LB (LSLB) agar supplemented with 

Zeocin (50 µg/µL).  The plates were incubated for 12 hours at 37°C.  Five transformants 

were selected from each plate to inoculate individual 7mL cultures of LSLB/Zeocin 

media.  Cultures were rotary incubated for 12 hours at 37°C.  Plasmid DNA was isolated 

following a Qiagen Spin Miniprep protocol.  DNA was initially screened by a Xho I and 

Xba I double digestion.  Positive transformants were verified by agarose gel 

electrophoresis (4% GTG NuSieve agarose, 1X TBE buffer).  Automated DNA 

sequencing utilizing the AOX1 5’ and AOX1 3’ primers confirmed the correct DNA 

product.  
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Table 4-3.  Nucleic acid sequence of Yeast ELP adaptor with related amino acid coding sequence and restriction enzyme 
cut sites.   

 
                                                                Val   Pro    Ala   Val    Gly     Val   Pro                  Pro   Ala    Val    Gly  
CTCGAGAAAAGAGAGGCTGAAGCT  GTT  CCA  GCT  GTT  GGT  GTT  CCA AGAGACGGTACCCGTCTCTT CCA  GCT  GTT  GGT CTAGA 

  Xho I                                                  BsmBI                 BsmBI                                  Xba I 

 
 

 
Adaptor was inserted at XhoI and Xba I sites within the pPICZα-A expression vector.  The Yeast ELP gene was inserted within the adaptor at the double 
BsmB I sites. 
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 Cloning the Yeast ELP gene into the modified pPICZα-A expression plasmid.  

The modified pPICZα-A plasmid was digested with restriction enzyme BsmB I and SAP 

dephosphorylated.  The Yeast ELP gene was excised from the pZErO-1 plasmid via 

sequential digestion using restriction enzymes Bbs I and BsmB I and purified from an 

agarose gel.  A ligation reaction was performed to relocate the Yeast ELP gene from 

pZErO-1 to pPICZα-A.  The ligation mixture was transformed into electrocompetent 

TOP10F’ cells and plated on LB media under Zeocin antibiotic selection.  Isolated DNA 

from transformants was screened via agarose gel electrophoresis using Xho I and Xba I 

double digestion.  A product of 1575bp was observed (Figure 4-2B).  Automated DNA 

sequence analysis using AOX1 5’ and AOX1 3’ primers confirmed correct insertion of the 

Yeast ELP gene in frame with the N-terminal α–factor secretion signal and the C-terminal 

peptide containing the c-myc epitope and the polyhistidine tag.   

 Preparation of P. pastoris for chemical transformation.  The preparation of 

chemically competent X-33 P. pastoris cells was performed following the EasyComp 

Transformation (Invitrogen) protocol.  Briefly, a YPD (Yeast Extract Peptone Dextrose) 

agar plate was streaked with the X-33 strain of P. pastoris such that isolated individual 

colonies grew after an incubation at 30°C for 2 days.  A total of 10mL of YPD media was 

inoculated with a single colony and grown overnight at 30°C in a shaking incubator (250 

rpm).  The cells were diluted from the overnight culture to an OD600 of 0.1 in 10mL of YPD.  

Cells were pelleted by centrifugation at 500g for 5 minutes at 25°C and resuspended in 

1mL Solution 1 (EasyComp), yielding competent X-33 cells.  A total of 50 µL of competent 

cells were aliquoted into 1.5mL sterile screw-cap tubes and stored at -80°C. 
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Scheme 4-1.  Cloning strategy in the construction of the Yeast ELP gene.  The seven 
unique double stranded DNA monomer cassettes were ligated together to form 
concatamer of random sequence.  A target multimer of 1575bp was selected, cloned into 
the recombinant plasmid, pPICZα-A and integrated into the P. pastoris host DNA. 

Cloning into P. pastoris expression

Expression of Recombinant Yeast

Transformation of P. pastoris
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 Transformation of the Yeast ELP gene into P. pastoris.  E. coli was utilized to 

propagate the plasmid containing the Yeast ELP gene.  A total of 5 to 10 µg of plasmid 

carrying the Yeast ELP gene was isolated and was linearized within the 5’ AOX1 region 

through digestion with restriction enzyme Pme I to promote integration into the P. pastoris 

host.  A vector linearized within the 5’ AOX1 region will integrate by gene insertion into the 

host’s 5’ AOX1 region.  The linearized plasmid was isolated via preparative gel 

electrophoresis (1% agarose, 0.5X TAE) and purified using Zymoclean Gel Recovery.   

 Transformation was performed following the EasyComp transformation protocol.  

One tube of competent X-33 cells was thawed at room temperature.  A total of 3 µg of 

linearized Yeast ELP DNA was added to the thawed cells.   A total of 1mL of Solution II 

(EasyComp) was added to the DNA-cell mixture, vortexed, and incubated for 1 hour at 

30°C in a water bath.  The mixture was mixed every 15 minutes to increase transformation 

efficiency.  Following the incubation, cells were heat shocked at 42°C for 10 minutes.  

Cells were split into two centrifuge tubes with 1mL of YPD medium added to each tube 

and incubated at 30°C for 1 hour to allow for expression of Zeocin resistance.  Cells were 

pelleted by centrifugation at 3000g for 5 minutes at 25°C and the pellet resuspended in 

150 µL of Solution III (EasyComp).  The entire transformation was spread on YPDS (Yeast 

Extract Peptone Dextrose with Sorbitol)/Zeocin agar plates and incubated at 30°C for 4 

days.   

 PCR screening for correct gene insertion into the P. pastoris host.  All 

polymerase chain reaction (PCR) screening was performed using the Qiagen Taq PCR, 

which includes the Q-solution to assist in the amplification of difficult to amplify G-C rich 

DNA.  According to the manufacturer’s instruction, a 50 µL reaction mixture using the 

AOX1 5’ and AOX1 3’ primers (5 µM) and Q-solution was subjected to a PCR cycle that 
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employed 25 cycles of a one minute fifteen second denaturation at 94°C, one minute 

fifteen second primer anneal at 57°C, and a three minute primer extension at 72°C.   

 Expression of Yeast ELP in P. pastoris.  A single colony of the transformants 

was used to inoculate 25mL of BMGY, a buffered glycerol complex medium, in a 250mL 

baffled flask, grown at 30°C with shaking until and OD600 of 2 was reached.  Cells were 

harvested by centrifugation at 3000g for 5 minutes at 25°C and resuspended in 100mL 

BMMY, a buffered methanol complex medium, for induction of expression in a 1L flask.  

To maintain induction, 100% methanol was added to a final concentration of 0.5% 

methanol every 24 hours for 4 days.  After 4 days, cells were harvested and supernatant 

collected.  Both the cellular fraction and supernatant was analyzed for protein expression.   

 Purification of Yeast ELP from P. pastoris.  Prior to protein purification, the 

supernatant was concentrated using an Amicon Ultra centrifugal filter with a molecular 

weight cut off of 30,000 kDa.  Metal affinity chromatography was used for purification of 

Yeast ELP, which isolated the protein by the polyhistidine tag, according to manufacturer 

instructions.  Briefly, a cobalt based TALON metal affinity resin (Clontech) was equilibrated 

with equilibration buffer (50mM sodium phosphate, 300mM NaCl, pH 7.0).  The 

concentrated supernatant was run through the column by gravity flow followed by 

extensive washes with equilibration buffer.  The bound protein was eluted with Elution 

buffer (50 mM sodium phosphate, 300mM NaCl, 250mM imidizole, pH 7.0) and desalted 

using PD-10 desalting columns (GE Healthcare Life Sciences).  Lyophilization afforded 

protein Yeast ELP as fibrous solid in an isolated yield of 2.5 mg/L.  Efforts to optimize 

yields are underway [228]. 

 Additionally, as observed with other structural protein expression, some protein 

was isolated from both the cytosolic and membrane fractions, though most of the protein 

was found to be secreted into the media.  It has been noted that some higher eukaryotic 
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proteins are not compatible with the yeast secretory apparatus and these proteins remain 

trapped at some point along the secretory pathway [228, 229].  To isolate this protein, the 

harvested cells were resuspended in breaking buffer (20mM Tris-Cl, pH 7.5, 1 mM EDTA, 

5% glycerol) and then disrupted through vortexing cycles.  An analytical spin was used to 

assess breaking efficiency.  Cell lysates were centrifuged at 40,000g for 40 minutes at 4°C 

and the cytosolic fraction was collected and His-purified.  The membrane fraction was 

detergent extracted with 0.5% Triton X-100 overnight at 4°C.  The lysate was centrifuged 

at 40,000g for 40 minutes at 4°C and the soluble membrane fraction collected and His-

purified.  Isolated yields of less than 1 µg were obtained from both cytosolic and 

membrane fractions, which confirmed that the ELP was not trapped in the secretory 

pathway. 

 Identification of the recombinant elastin protein, Yeast ELP.  Sodium dodecyl 

sulfate (SDS) polyacrylamide gel electrophoresis was performed.  Samples were 

separated on a 4-20% gradient acrylamide-SDS gel and total protein was visualized with 

Coomassie G250 (BioRad).  Western blot analysis was performed by transfer to an 

Immobilon PSQ (Polyvinylidene fluoride) (PVDF) membrane (Millipore) and probed with 

either mouse His-tag monoclonal antibodies (Novagen) or anti-c-myc mouse monoclonal 

antibodies followed by a goat-anti-mouse HRP (horseradish peroxidase) secondary 

antibody.   Bands were visualized by using the ECL Western blotting detection kit 

(Amersham Biosciences).  Both antibodies stained a band at 65 kDa, corresponding to the 

Yeast ELP protein.   

Edman degradation was used to identify the repeat unit of Yeast ELP to confirm 

expression.  Briefly, the protein was electroblotted on a PVDF membrane and stained 

with Amido Black (BioRad).  The Yeast ELP protein negatively stained using this stain.  

Approximately 0.5 to 2.0 pmol of protein obtained from the membrane was used for N-
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terminal sequence analysis using automated sequencers at the Microchemical and 

Proteomics Facility at Emory University.   

 

4.3  RESULTS and DISCUSSION 

Conceptual framework for the design of Yeast-expressed ELP.  The elastin-

like protein, Yeast ELP, was employed as a test substrate for assessing the efficacy of 

monomer library concatamerization in the design of a nonrepetitive ELP gene for 

expression in yeast.  The Yeast ELP protein comprises a concatenated series of 

pentapeptide repeat units yielding 21 repeats of the pentapeptide monomer sequence 

[(VPGVG)2VPGEG(VPGVG)2].  Our group has investigated this repeat sequence as a 

constituent of multiblock protein copolymers expressed by E.coli.  As a consequence of 

its high transition temperature (>> 37°C), this sequence affords a conformationally 

flexible protein segment under physiologically relevant conditions [1-4].    

In order to express a highly repetitive elastin-like protein in P. pastoris, a novel 

strategy was employed to reduce primary DNA sequence repetition without altering the 

recurring 21-mer peptide sequence.  This was accomplished through the design of a 

DNA monomer library.  Protein engineering has frequently used protein libraries that 

include defined amino acid mixtures at certain positions of interest [230, 231]. Two of the 

most commonly used methods for library generation are random mutagenesis and 

cassette mutagenesis.  Random mutagenesis introduces random point mutations 

throughout the entire protein.  The most common method for creating such a library is 

PCR.  This method has been utilized in studies, for example, aimed to identify amino 

acids integral to enzymatic function and protein-protein interactions [232].  Cassette 

mutagenesis is a method of library creation where a region of interest is targeted for 
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mutagenesis through the use of degenerate oligonucleotides.  We have used 

degenerate oligonucleotides in the design of our DNA monomer repeat unit to create a 

library of monomers, which were subsequently ligated together to create our target ELP 

gene. 

The genetic code is degenerate in that the protein biosyntheic machinery utilizes 

61 sense codons to encode the 20 amino acids.  Due to this degeneracy, different 

nucleotide sequences code for the same amino acid.  These coding differences are 

restricted to usually one position in the codon triplet and allow for multiple nucleotides to 

encode the same amino acid, thereby increasing variability of the primary DNA 

sequence of the protein.  For example, the third position of the glycine codons (GGA, 

GGG, GGC, GGT) is a fourfold degenerate site because all nucleotide substitutions at 

this site are synonymous, in that the coded amino acid is unchanged.  Degenerate 

bases allow for the incorporation of multiple nucleotides into the specified site within a 

codon.  As detailed in Table 4-1B, the monomer repeat unit for the Yeast ELP gene was 

designed through chemical synthesis based on the degenerate bases, W, encoding for 

either A or T, and H, encoding for A, T or C.  While the primary genetic sequence for the 

Yeast ELP was based on the midblock sequence of a previously reported triblock 

protein expressed in E. coli [1, 2], the sequence was modified in accordance with the 

preferred codon usage of P. pastoris (Figure 4-1).  The codon triplet encoding proline 

residues was determined to be critically important in the successful expression of this 

protein.  CCG, a high usage codon in E.coli and used extensively for encoding proline in 

the pentapeptide repeat is not adequately translated in P. pastoris.  Therefore, in the 

design of the Yeast ELP gene, only CCA and CCT codons were employed to code for 

proline residues (Table 4-1). 
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Pichia pastoris [gbpln]: 66 CDS's (38158 codons)  
 
fields: [triplet] [frequency: per thousand] ([number])  
 
UUU 23.6 (901)   UCU 23.9 (911)   UAU 14.7 (561)   UGU  8.3 (318) 
UUC 18.9 (721)  UCC 16.3 (621)   UAC 18.3 (698)   UGC  4.4 (168) 
UUA 14.5 (553)   UCA 15.4 (587)   UAA  0.9 (35)   UGA  0.3 (13) 
UUG 31.9 (1218)   UCG  6.8 (258)   UAG  0.5 (18)   UGG  9.8 (375) 
 
CUU 16.1 (614)   CCU 15.3 (584)   CAU 10.4 (395)   CGU  6.7 (256) 
CUC  7.6 (291)   CCC  6.5 (249)   CAC  9.1 (346)   CGC  2.3 (87) 
CUA 11.4 (435)   CCA 17.5 (668)   CAA 24.1 (918)   CGA  4.3 (163) 
CUG 15.5 (591)   CCG  3.9 (150)   CAG 14.5 (554)   CGG  1.8 (70) 
 
AUU 31.0 (1184)   ACU 23.7 (903)   AAU 22.9 (875)   AGU 12.2 (464) 
AUC 19.0 (725)   ACC 14.0 (533)   AAC 25.5 (974)   AGC  7.3 (279) 
AUA 11.3 (432)   ACA 14.2 (541)   AAA 30.0 (1145)   AGA 19.9 (760) 
AUG 19.2 (734)   ACG  6.0 (230)   AAG 34.8 (1328)   AGG  6.7 (254) 
 
GUU 27.0 (1032)   GCU 29.9 (1141)   GAU 36.8 (1405)   GGU 27.1 (1035) 
GUC 14.7 (561)   GCC 17.0 (649)   GAC 26.5 (1012)   GGC  8.5 (326) 
GUA 10.0 (381)   GCA 16.4 (624)   GAA 40.6 (1550)   GGA 20.0 (762) 
GUG 12.8 (487)   GCG  3.5 (134)   GAG 29.9 (1141)   GGG  6.0 (230)  

 

 
Figure 4-1. Codon Usage Table for P. pastoris (Codon Usage Database, NCBI 
GenBank) 
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Design of a library of nonrepetitive DNA monomers.  Chemically synthesized, 

single-stranded oligonucleotides designed with degenerate bases at the specified 

locations, were obtained from SigmaGenosys.  At each degenerative base location, 

equal molar amounts of each base were introduced.  For example, at a W site, equal 

amounts of A and T were available during synthesis.  Through primed extension, double 

stranded cassettes of the monomer repeat units were generated.  The cassettes were 

digested with restriction enzymes BamH I and HinD III to enable cloning into the pZErO-

1 cloning plasmid at the complementary sites within the multiple cloning region.  Multiple 

transformants were screened and automated DNA sequencing confirmed correct and 

unique DNA products for seven separate monomer cassettes, comprising the Yeast 

ELP monomer library (Table 4-2A). 

The literature reports that gene locations enriched in repetitive sequences are 

‘hot spots’ for mutational events such as insertions, deletions, and frame shifts [233, 

234].   DNA sequences with GC and CA/GT repeats have been reported to undergo 

spontaneous deletions [235, 236], while regions rich in AT have been reported as ‘hot 

spots’ for frame shifts and deletions [237].  Additionally, long repetitive sequences have 

been found to be less stable than shorter ones [238].  Specifically, in P. pastoris, the 

expression of foreign genes with high A and T content can be affected by premature 

transcription termination [239, 240], therefore, care was taken in the genetic design to 

limit such ‘hot spot’ motifs.   

Concatamerization and identification of the Yeast ELP gene.  Since 

automated DNA synthesis is currently limited to the production of oligonucleotides of 

lengths corresponding to approximately 100 bases, sequences encoding larger proteins 

cannot be directly synthesized.  DNA cassette concatamerization is a commonly 

employed method for assembling genes encoding large, repetitive proteins (Scheme 4-
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1) [2, 98].  The genes composing the monomer library were designed with non-

palindromic cohesive ends.  This was accomplished through the use of type II restriction 

enzymes, Bbs I and BsmB I, which recognize and cleave non-palindromic sequences as 

detailed in Table 4-2B, creating the digested cassette in Table 4-2C.  Consequently, 

random ligation of the seven DNA monomers proceeds in a head-to-tail fashion to 

generate concatamers of varying lengths by increments of a monomer repeat unit.  

Concatamers were separated by size, or degree of concatamerization, on an agarose 

gel (Figure 4-2A) and concatamers of 1000 to 3000bp in size were isolated and ligated 

back into the acceptor plasmid.  A clone of 1575bp was identified and was denoted as 

Yeast ELP (Figure 4-2B).       

        

                       
 

       

 Figure 4-2.  A. 1% TAE (Tris-acetate-EDTA) agarose gel.  Ladder of concatamerization 
products, each band indicates different sized concatamers, differing by 75 bp (addition of 
one monomer cassette).  Seven unique monomer units were pooled in equal amounts in 
the concatamerization reaction for random incorporation of the monomer units in the 
concatamerization of the Yeast ELP gene.  B. 1% TAE (Tris-acetate-EDTA) agarose 
gel.  Xho I / Xba I digested Yeast ELP (1575bp), pPICZα-A (3.6 kb).  DNA standard 
used was a 1Kb DNA ladder (NEB). 
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Expression system employed for Yeast ELP.  Recombinant elastin proteins 

have traditionally been expressed through microbial expression in E. coli [241].  

Nonetheless, recognized drawbacks exist.  In particular, purification of the expressed 

protein products is labor intensive as isolation from a pool of cytoplasmic proteins and 

cellular contaminants is required.  Additionally, endotoxin, an amphiphillic 

lipopolysaccharide found in the wall of gram-negative bacteria, is released upon cell lysis 

and can become associated with the target protein [202].   As an alternative, the 

methylotropic yeast, P. pastoris was investigated for elastin expression and secretion.  

Notably, P. pastoris secretes very low levels of native proteins, which simplifies 

purification protocols [1, 242].  Moreover, endotoxin is not present as a potential 

contaminant.   

 Recent reports have described the expression of structural proteins in yeast.  

Spider dragline silk-like proteins have been expressed in both E. coli and P. pastoris at 

high levels [223, 243].  Likewise, full length tropoelastin has been expressed in 

Saccharomyces cerevisiae using a fusion peptide for targeted secretion into the 

endoplasmic reticulum with enhanced biostability [222].  P. pastoris has also been 

employed for co-expression of Type-I, -II or -III collagen with prolyl 4-hydroxylase 

yielding collagen fibrils that display D-periodic banding [224, 225].  However, issues 

related to gene rearrangement have been observed with these highly repetitive proteins.  

For example, a 101 amino acid spider dragline silk-like protein, derived from the major 

dragline protein of Nephila clavipes [244], produced multiple sized protein products, 

each an integral number of repeats of the 101 amino acid sequence encoded by the 

gene.  It was speculated that different sized products were the result of expansion or 

deletion of the DNA repeat sequence [223].  Additionally, the importance of genetic 

sequence diversity is noted among patients with trinucleotide repeat associated disease 

where sequence divergence between repeated sequences reduce the severity of the 
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disease and likelihood of inheritance [245, 246].  In fact, studies examining spontaneous 

deletions demonstrate that alteration of a single base pair within homology regions 

reduces the deletion incidence by an order of magnitude [247]. 

 In this report, P. pastoris was employed as the host for expression of the 

recombinant protein Yeast ELP.  The methylotrophic yeast strain X-33 was selected.  

Without glucose present, P. pastoris uses methanol as a carbon source.  The alcohol 

oxidase promoter (AOX 1) controls the expression of alcohol oxidase, which is integral to 

the initial step in methanol metabolism [228, 248].  The expression vector pPICZα-A 

(Figure 4-3 and 4-4), takes advantage of the AOX 1 promoter and uses methanol to 

induce protein expression of the Yeast ELP protein.  

 The 5’ AOX1 gene within the pPICZα-A vector allows for targeted integration of the 

expression construct through homologous recombination into the P. pastoris genome, 

creating a stable host able to generate high levels of protein expression (Figure 4-5).  The 

pPICZα-A vector also contains a Zeocin resistance gene that allows for antibiotic 

screening of transformed cells. Additionally, this vector includes the C-terminal fusion tags, 

c-myc epitope and polyhistidine (6xHis) sequences, that facilitate purification and analysis 

of expressed proteins.  Finally, pPICZα-A contains an α-factor secretion signal, which 

targets the protein product for secretion into the growth media.   
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Figure 4-3.  pPICZα-A expression vector (Invitrogen).  The Yeast ELP gene was 
cloned into the vector at the Xho I and Xba I restriction sites within the multiple 
cloning region.  Vector was linearized with Pme I digestion for integration into the 
P. pastoris genome at the AOX1 crossover sites.  The expressed elastin product 
has an α-factor signal sequence for secretion which is subsequently cleaved.  
Additionally, the protein retains a 5’ c-myc epitope and 5’ 6XHis-tag which can be 
used for purification or identification via Western blotting. 
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Figure 4-4.   pPICZα-A expression vector multiple cloning region (MCR) (Invitrogen).  
The Yeast ELP gene was cloned into the vector at the Xho I and Xba I restriction sites 
(  ) within the multiple cloning region.  Verification of gene insertion through PCR 
amplification employed the 5’ and 3’ AOX1 primers.   
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Figure 4-5.  Plasmid integration in P. Pastoris.  pPICZα-A vector containing the Yeast 
ELP gene of interest was linearized within the 5’ AOX1 region through digestion with 
restriction enzyme Pme I.  Linearized plasmid was integrated by gene insertion into the 
host AOX1 region. 
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 The 1575 bp Yeast ELP concatamer was inserted into a specially designed 

adaptor at the double BsmB I sites (Table 4-3) for cloning into the pPICZα-A expression 

vector at Xho I and Xba I restriction sites within the multiple cloning region.  This allowed 

for correct in frame insertion of the gene with the N-terminal α-factor secretion signal and 

the C-terminal c-myc epitope and polyhistidine tag.    

Confirming Integration by PCR.  Polymerase Chain Reaction (PCR) was used 

to analyze P. pastoris integrants to determine successful introduction of the expression 

cassette into the yeast chromosome.  The Yeast ELP gene was amplified using the 

AOX1 5’ (5´-GACTGGTTCCAATTGACAAGC-3´) primer paired with the AOX1 3’ (5´-

GCAAATGGCATT-CTGACATCC-3´) primer.  Using this method, two bands were 

expected in positive transformants, one corresponding to the Yeast ELP gene (1575bp 

gene + 588bp from the pPICZα-A parent plasmid) and the other to the AOX1 gene within 

the chromosome (approximately 2.2 kb).   All PCR screening was performed using the 

Qiagen Taq PCR, which includes Q-solution to assist in the amplification of G-C rich 

DNA.  The PCR product obtained was suggestive of incomplete amplification as multiple 

product bands were observed (Figure 4-6A), most likely as a result of both its repetitive 

nature and its G-C rich DNA.  PCR products were run on a preparative agarose gel.  

Amplification of the positive control, Yeast ELP miniprep DNA from E. coli propagation, 

appeared as a smear and ladder product (Figure 4-6A, Lane 1).  Empty X-33 cells were 

analyzed as a negative control and amplification of only the AOX1 gene from the yeast 

chromosome at 2.2 kb was evident (Figure 4-6A, Lane 2).  A screen of colonies 

indicated a possible transformant where a smear and ladder product was observed 

(Figure 4-6A, Lane 3). 

Confirmation of Yeast ELP gene integration was accomplished through 

amplification using Yeast ELP 3’-2 (5’-CTCCGACTCCTGGAACAC-3’) primer paired with 
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the AOX1 5’ (5´-GACTGGTTCCAATTGACAAGC-3´) primer.  The Yeast ELP 3’-2 primer 

was designed to amplify only a 400bp product between the regions of the AOX1 5’ 

priming site within the pPICZα-A vector and into the 5’ terminus of the Yeast ELP gene.   

This product was present in the positive control and the putative transformant, but not 

observed in the negative control (Figure 4-6B, Lane 1, 2, and 3, respectively).  DNA 

sequencing verified the identity of the 400bp PCR product as the expected region from 

the AOX1 5’ priming site into the 5’ segment of the Yeast ELP gene; confirming insertion 

of Yeast ELP into the P. pastoris chromosome. 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4-6. A. 1% TAE (Tris-acetate-EDTA) agarose gel of PCR products using 
AOX1 5’ and AOX1 3’ primers.  Note incomplete amplification of the Yeast ELP gene as 
observed with the smear and ladder product (Lane 1).  Lane 1: Positive Control, Yeast 
ELP miniprep DNA.  Lane 2: Negative Control, empty X-33 colony stab, note the yeast 
chromosome has PCR product of 2.2 kb.  Lane 3:  Colony PCR product of X-33 
transformed cells containing Yeast ELP, note that the smear and ladder product is also 
observed.  B. 1.5% TAE (Tris-acetate-EDTA) agarose gel of PCR products utilizing the 
Yeast ELP 3’-2 primer and AOX1 5’ primer.  Target product, approximately 400bp in 
size, was excised from the gel, purified, and correct sequence verified through DNA 
sequence analysis using the AOX1 5’ primer.  Lane 1:  Positive control, Yeast ELP 
miniprep DNA, 400bp PCR product observed.  Lane 2:  Colony PCR product of X-33 
transformed cells containing Yeast ELP, 400bp product observed.  Lane 3: Negative 
Control, empty X-33 colony stab, no 400bp product observed.   

 

Western blot analysis.  Yeast ELP was isolated and affinity purified from the 

growth media with non-optimized yields of 2 mg/L.  Small amounts of the protein were 
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identified in the membrane and soluble cytosolic fractions, but in low amounts and were 

not utilized in protein analysis.  The expected molecular mass for the Yeast ELP protein 

was approximately 56 kDa.  As the expressed protein product did not stain with 

Coomassie, Western blot analysis was utilized to confirm the identity.  An anti-His 

primary antibody revealed the protein band migrating at approximately 65 kDa and was 

confirmed as the band corresponding to Yeast ELP using the anti-myc antibody (Figure 

4-7 A and B).  Elastin proteins tend to migrate approximately 20% higher than the 

theoretical molecular weight in a PAGE gel [75, 97].  To confirm the product was not 

migrating at a higher mass due to glycosylation, the purified protein was treated with N-

glycosidase F (Prozyme), an enzyme which catalyzes the release of all N-linked 

oligosaccharides added by yeast during secretion.  A 65 kDa product was observed 

before and after treatment with the enzyme [229, 249] (Figure 4-7C). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-7.  Western blotting of elastin-mimetic protein Yeast ELP run on a 4-20% SDS-
PAGE gel.  A. c-myc primary antibody, goat-anti-mouse secondary antibody.  B. anti-His 
primary antibody, goat-anti-mouse secondary antibody.   C.  Deglycosylation of Yeast 
ELP.  Western blotting of elastin-mimetic protein Yeast ELP run on a 4-20% SDS-PAGE 
gel, anti-His primary antibody, goat-anti-mouse secondary antibody.   Marker lane:  
Precision Plus Protein Kaleidoscope (Bio-Rad).  Lane 1:  Purified Yeast ELP, Lane 2:  
Purified and deglycosylated Yeast ELP.  Analysis indicates no deglycosylation of the 
Yeast ELP protein.
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4.4  CONCLUSION 

In this report, we have demonstrated the expression of a 56 kDa elastin-like 

protein from P. pastoris.  We have employed a new strategy, monomer library 

multimerization, in designing non-repetitive ELP genes for highly repetitive protein 

sequences.  This was accomplished through the synthesis of seven unique monomer 

cassettes utilizing degenerate bases.  The monomer cassettes were randomly ligated in 

a concatamerization reaction, thereby creating the target gene with varying genetic 

sequences throughout, which, nonetheless, encode identical repetitive amino acid 

sequences.  We anticipate that this strategy will be useful for creating large, repetitive 

genes for a variety of expression systems; in order to more closely approach the genetic 

diversity inherent to native DNA sequences.   Additionally, the potential exists to 

generate glycosylated ELPs through incorporating appropriate glycosylation sites.  

Indeed, several approaches such as genomics, combinatorial libraries, and synthetic 

chemistry have been employed for sugar chain remodeling of human proteins in P. 

pastoris and other expression systems [250-252].     
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CHAPTER 5 
 

CONCLUSIONS and FUTURE DIRECTIONS 
 
 
 

With over 500,000 coronary bypass surgeries being performed each year, the 

need for an adequate vessel replacement material is apparent [8].  The generation of 

protein polymers that mimic native structural proteins offers a replacement strategy to 

develop a vascular graft with clinical performance results that match or exceed those of 

a native vessel.  The elastin protein component, which is responsible for distensibility 

and elastic recovery, appears to be critical in the development of mechanical properties 

that match the native blood vessel [48-52].  The work presented in this dissertation 

describes the design of novel protein polymers composed of repetitive amino acid 

sequences based on the primary sequence of native elastin.  These studies are the first 

evaluation of in vivo biocompatibility and long-term biostability of these protein polymers.  

Additionally, these studies are the first to report the monomer library concatamerization 

strategy in the synthesis of recombinant elastin-mimetic genes for protein expression in 

Pichia pastoris.  The methodologies established can serve as a framework for the 

design, evaluation, and characterization of the next generation of recombinant elastin-

mimetic protein polymers.    

As these studies provide the foundation work for the long-term goal of creating a 

vascular graft substitute which mechanically matches native vasculature, several 

recommendations for future investigations are proposed for each of the previous 

chapters.   

Chapter 2.  Elastin-Mimetic Protein Polymers Capable of Physical and 

Chemical Crosslinking.  We have employed genetic engineering in the design of novel 
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protein polymers composed of repetitive amino acid sequences or peptide blocks whose 

structural complexity imparts distinct mechanical, chemical or biological properties.  

Previously, our group has reported the synthesis of elastin-mimetic multiblock copolymer 

composed of identical endblocks derived from self-associating, hydrophobic sequences 

that display plastic-like mechanical responses (Ile-Pro-Ala-Val-Gly), separated by a 

central block that is both hydrophilic and elastomeric (Val-Pro-Gly-Glu-Gly) [1, 2].  

Significantly, these multiblock systems afford the ability to form physical or virtual 

crosslinked networks through the self-association of chemically similar domains under 

physiologically relevant conditions (pH 7.4, 37°C).   

Although, physically crosslinked protein-based materials possess a number of 

advantages over their chemically crosslinked counterparts, physical crosslinks and the 

related domains so formed may be deformed or damaged at applied stresses lower than 

those required to disrupt covalent crosslinks.  In the present study, we have synthesized 

a new class of recombinant elastin-mimetic triblock copolymer capable of both physical 

and chemical crosslinking.  We have demonstrated that chemical crosslinking provides 

an independent mechanism for control of protein mechanical responses.  Specifically, 

elastic modulus and tensile strength were enhanced and creep strain reduced through 

the addition of chemical crosslinking sites.  Additionally, we have demonstrated 

exceptional biocompatibility of gluteraldehyde crosslinked multiblock systems.   

Although the incorporation of chemical crosslinking sites improved the elastic 

modulus, ultimate tensile strength, and creep responses of these protein polymers, a 

moderate decrease in resilience was observed.  The targeted resilience criterion for 

crosslinked systems was greater than 80% at a 35-40% strain.  We suggest that 

crosslinking stabilizes the semi-rigid endblocks beyond the effects of physically 

crosslinking alone.  Since crosslinking was performed prior to preconditioning, the 

capacity of the chain entanglements between the midblock and the endblock domains to 
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structurally rearrange in resonse to the conditioning protocol may have been restricted, 

in particular, limiting the response of the elastomeric midlbock.  Future experiments 

could explore the effect of preconditioning prior to crosslinking and its subsequent 

effects on resilience.   

These protein polymers were designed for acellular as well as cell based 

technologies.  Gluteraldehyde was employed as a model crosslinking system but 

because of the cytotoxicity associated with this crosslinker, it is not adequate for 

crosslinking cell containing systems.  In this regard, other groups have investigated 

crosslinking agents which are non-toxic to cells, including THPP [101, 102] and a natural 

crosslinker, genipin [65, 92].  Future experiments could explore the efficiency of these 

crosslinkers for the LysB10 and R4.  Presently, a research thrust in our laboratory is to 

modify the LysB10 protein to include cell binding domains.  In such systems, it might be 

advantageous to crosslink proteins in the presence of cells, therefore biocompatible 

crosslinking systems will have to be investigated.   

The versatility of these materials has been displayed through the capacity to 

process triblock protein polymers into a variety of forms, including films, gels, and fiber 

networks [1, 5, 7, 253, 254].  The fabrication of artificial organs and engineered living 

tissues is dependent on the ability to generate and assemble novel materials into 

appropriate 2-D or 3-D structures and to precisely tailor material-related properties to 

achieve a desired clinical response [10].  It is likely that the design of artificial matrices 

will require the emulation of many, if not all, of the morphological and physiologic 

features of native tissues, thus reformulation of recombinant proteins into fiber networks 

has been investigated.  In this regard, electrospinning technology has been employed in 

the fabrication of elastin-mimetic fiber networks.  Specifically, in the late 1990s, our 

group was the first to demonstrate that electrospinning could be used to fabricate native 

and recombinant collagen and elastins into non-woven fiber networks comprised of 
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nanometer scale fibers that more closely mimic native scaffolds [41, 103, 255-257].  

Future experiments could explore using LysB10 and R4 in the generation of nonwoven 

fiber networks.  The ability to chemically crosslink LysB10 and R4 fibers has the 

potential to enhance mechanical responses.  A complete description of the science of 

electrospinning and the current pursuits of electrospinning elastin and recombinant 

elastin proteins can be found in Appendix B.     

As an example, electrospinning of the B9 protein polymer demonstrated 

promising results in the development of a protein scaffold for tissue engineering with 

mechanical behaviors approaching those of the elastin fiber network component of a 

blood vessel (unpublished data).  It is likely that mechanical behaviors and biostability of 

electrospun fiber networks can be enhanced with chemical crosslinking, thus LysB10 

and R4 afford the potential to create superior scaffolding materials.   

  Alternative methods to modulate mechanical behaviors of fiber networks, 

specifically thermal annealing, have been investigated.  Thermal annealing takes place 

in the hydrated state well above the protein’s inverse transition temperature (60°C).  

Thermal annealing has been employed as a processing strategy to alter the 

microstructure of polymeric materials, most often to increase the crystallinity or to 

modulate microphase separation in order to improve material or application dependent 

properties, including strength or stiffness [258-260], hardness [259], viscoelastic 

properties [261, 262], water absorptive properties [261, 263], or photoluminescence 

[263].   

Thermal annealing of B9 fiber networks showed encouraging results for 

improving network mechanical responses.  This treatment appears to induce a 

temperature triggered phase mixing of midblock and endblock regions over this thermal 

transition as determined from solid-state NMR, which has substantial impact on the 

hydration levels of fiber networks.  Significantly, a ~50% decrease in equilibrium swelling 
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ratio was assocated with thermal annealing.  Thermally induced enhancement to 

mechanical properties was observed as an increase in ultimate tensile strength and 

elastic modulus, and likely is a consequence of both thermally induced interpenetration 

of hydrophobic and hydrophilic domains and the resultant decrease in water content 

(unpublished data).  It is likely that we can exploit tunable control over these properties 

through thermal annealing in both fiber networks and film based systems therefore 

serving as a potential method of modulating mechanical responses of LysB10 and R4 

proteins processed as films, gels or fiber networks.   

Chapter 3.  Biocompatibility of Recombinant Elastin-Mimetic Proteins.  The 

triblock copolymer, designated B9, contains identical hydrophobic endblocks with 

[(IPAVG)4(VPAVG)] repeat sequences, separated by a central hydrophilic block with 

repeating units of [(VPGVG)2(VPGEG)(VPGVG)2] [2] and reversibly self-assembles from 

concentrated aqueous solution above the Tt of the hydrophobic endblocks (~18°C) to 

form a stable, water solvated, interlocking network.  In vivo studies have demonstrated 

excellent blood contacting properties in a primate arteriovenous shunt model when the 

triblock copolymer, B9, is coated as a thin film on the lumen of a small diameter vascular 

graft [7].  However, long-term biocompatibility and biostability for any physically 

crosslinked protein-based materials has yet to be fully defined.   

Specific reports documenting in vivo responses to elastin-mimetic protein 

implants have been limited; largely confined to several studies performed 15 to 20 years 

ago on proteins synthesized chemically and subject to radiation crosslinking [82, 121]  In 

these investigations, homopolymers or copolymers composed of VPGVG, VPGKG, 

VPGEG, IPAVG, and VPAVG reportedly did not induce significant inflammatory or 

immune mediated reactions [82, 121-123].   

The evaluation of in vivo biocompatibility has largely been based on 

characterizing local tissue responses to subcutaneously implanted materials where the 
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intensity and duration of the inflammation and wound healing, including capsule 

formation, is evaluated histologically [133, 134].  In this report, B9 implants initiated 

limited local inflammatory activity and displayed among the thinnest fibrous capsule 

observed for comparable implant sites and period of implantation [135-141].  FACS 

analysis of peritoneal lavage fluid harvested one week after injection confirms 

biocompatibility with no apparent difference in either the number or type of inflammatory 

cells observed in control non-injected mice and those implanted with a B9 gel.  These 

data suggest that this biopolymer does not induce a significant inflammatory reaction. 

To assess biostability of B9 hydrogels, we have employed magnetic resonance 

imaging (MRI) to monitor implant volume changes for the duration of the experiment 

[162-164].  To date, B9 hydrogel implants have been surprisingly stable, retaining 

greater than 60% of their original volume at seven months.  Most biomaterials whose 

integrity is based on self-association of hydrophobic constituents display short-lived 

stability in vivo and have been utilized for drug delivery or in wound healing applications.  

To our knowledge, these in vivo studies are the first to demonstrate that self-assembled 

protein-based materials of any form can be designed with structural stability approaching 

that displayed by many electrostatically or covalently crosslinked biopolymers.  This 

study is ongoing.  When significant biodegradation is observed, the implant and 

surrounding tissue will be excised and examined histologically.  

The work presented in Chapter 3 serves as a preliminary study to define 

protocols necessary for in vivo evaluation of these materials, including, endotoxin 

removal from amphiphilic recombinant elastin-mimetic proteins, fabrication of uniform 

hydrogel implants, histological evaluations of those hydrogels, and in vivo evaluation 

using the MRI, in addition to establishing methodologies for data analysis.   

Given the biostability of physically crosslinked systems, it would be interesting to 

evaluate the biostability of physically and chemically crosslinked systems and thus, the 
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impact that crosslinking has on the stability of these proteins in vivo.  Chemically 

crosslinked LysB10 and R4 hydrogels can be employed for these studies.  It is likely 

these proteins will exhibit enhanced biostability characteristics when crosslinked with 

gluteraldehyde or other chemical agents as compared to physically crosslinked B9 

proteins.   Given the longevity of these materials in vivo and their hemocompatibility, it is 

likely they will find utility as structural components of artificial organs and engineered 

living tissues, as carriers for controlled drug release, or as biocompatible surface 

coatings.   

Chapter 4.  Recombinant Elastin Protein Expression in Pichia pastoris.  

Recombinant elastin proteins have traditionally been expressed through microbial 

expression in E.coli [241].  Nonetheless, recognized drawbacks exist, specifically, 

difficult target protein purification and endotoxin contamination during protein extraction.  

As an alternative, the methylotropic yeast, P. pastoris was investigated for elastin 

expression and secretion.  Notably, P. pastoris secretes very low levels of native 

proteins, which simplifies purification protocols [1, 242].  Moreover, endotoxin is not 

present as a potential contaminant.  Tropoelastin, collagen, and silk-like protein have all 

been expressed in yeast with varying degrees of success [222-225]. 

In the present study, we have demonstrated the expression of a 56 kDa elastin-like 

protein, Yeast ELP, from P. pastoris based on the pentapeptide repeat 

(VPGVG2)VPGEG(VPGVG)2.  A novel strategy was devised to construct a gene with 

enhanced sequence diversity that encodes a highly repetitive elastin-like protein polymer 

for expression in P. pastoris.  Traditionally, large repetitive genes that comprise most 

protein polymers have been created using a concatemerization strategy where a 

pentapeptide repeat cassette (monomer repeat unit) is self-ligated in a head-to-tail 

fashion [2, 98].  While this strategy has proven suitable for expression of elastin-like 

proteins in E. coli, the translation of repetitive gene sequence, especially in other host 
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systems, is often associated with reduced levels of protein expression.  Moreover, 

repetitive sequences are often prone to mutational events. Given these potential 

limitations, we designed a modified concatemerization strategy in which seven dissimilar 

monomer repeat units, encoding identical pentapeptide repeat sequences, served as a 

monomer library for the concatemerization reaction.  We anticipate that this strategy will 

be useful for creating large, repetitive genes for a variety of expression systems; in order 

to more closely approach the genetic diversity inherent to native DNA sequences.    

The expression of Yeast ELP served as a model system evaluating the efficacy 

of the monomer library concatamerization strategy in the synthesis of repetitive elastin 

genes for expression in P. pastoris.  The ultimate goal of this work is to create an 

alternative expression system for multiblock elastin-mimetic protein polymers.  Yeast 

ELP was a model protein based upon the sequence of the elastomeric midblock domain 

(E) of the B9 protein [2, 4].  In order to construct a triblock (P-E-P), plastic-like domains 

(P) encoding the pentapeptide repeat, IPAVG, were constructed in an analogous 

manner using the modified concatamerization strategy described in Chapter 4.  This 

work has been conducted in collaboration with the laboratory of Vincent Conticello, PhD 

at Emory University.  Future work for this project includes assembling these elastic-like 

and plastic-like genes into a gene encoding the P-E-P triblock.  This assembly strategy 

for such triblock copolymers has been extensively detailed in Chapter 2.   

Yeast expression systems have become an increasingly attractive host for the 

expression of heterologous proteins [219, 220], due to their capacity to be incorporated 

into industrial-scale fermentation schemes characterized by high cell densities in 

relatively inexpensive media.  In addition, heterologous proteins have been efficiently 

secreted into the expression medium, resulting in low-cost recovery of the protein.  

Significantly, endotoxin is not produced by yeast, thereby simplifying purification and 

sterilization strategies.   However, Yeast ELP yields must be optimized for large-scale 
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expression.  There are a variety of variables which can be modulated to improve 

expression.  Fermentation will likely improve expression levels as higher cell densities 

can be achieved [228].  Additionally, it has been noted that induction levels increase 

three to five times in cells which are fed methanol at growth-limiting rates relative to 

growing cells in excess methanol.  A fermenter would allow for the controlled feeding of 

methanol and enable monitoring of methanol feed rate and dissolved oxygen levels 

within the culture [228].   Other alternatives which can be explored for optimizing protein 

expression including switching expression vector, employing alternative signal 

sequence, or utilizing a different P. pastoris expression strain.   

Additionally, the potential exists to generate glycosylated ELPs through 

incorporating appropriate glycosylation sites.  The synthetic strategy we employ in the 

genetic design allows for incorporation of glycosylation recognition sequences to be 

incorporated into the elastin gene, for example, Asn-X-Ser/Thr, the recognition sequence 

for N-glycosylation in P. pastoris.  Indeed, several approaches such as genomics, 

combinatorial libraries, and synthetic chemistry have been employed for sugar chain 

remodeling of human proteins in P. pastoris and other expression systems [250-252].  

Glycoengineering recombinant elastin molecules with strategically placed carbohydrates 

has the potential to increase molecular stability, solubility, and reduce immunogenicity 

[264].   
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Table A-1.  Coding sequences for DNA monomer repeat units of individual blocks of Lys B10 

Elastin Monomer (E1)             
                             Val    Pro   Gly    Ala   Gly    Val    Pro   Gly   Ala   Gly    Val    Pro    
AGCTTGAAGAC GTT CCA GGT GCA GGC GTA CCG GGT GCT GGC GTT CCG  
HinD III                   Bbs I 
Gly   Ala   Gly     Val    Pro   Gly   Ala   Gly     Val    Pro   Gly   Ala   Gly    Val    Pro   
GGT GAA GGT GTT CCA GGC GCA GGT GTA CCG GGT GCG GGT GTT CCA AGAGACGG 
     BsmB I                   BamH I  

Plastin Monomer (P1) 
                              Ile     Pro    Ala   Val   Gly   Ile     Pro    Ala   Val   Gly    Ile    Pro    Ala   Val   Gly       
AGCTTGAAGAC ATT CCA GCT GTT GGT ATC CCG GCT GTT GGT ATC CCA GCT GTT GGC  
HinD III                    Bbs I 
Ile     Pro    Ala   Val   Gly     Ile     Pro    Ala   Val   Gly   Ile   Pro 
ATT CCG GCT GTA GGT ATC CCG GCT GTT GGT ATT CCA AGAGACGG  
BsmB I              BamH I      

Lysine Insert (I) 
       Ile    Pro    Ala   Val   Gly    Lys    Ala   Ala    Lys   Val   Pro   Gly  Ala    Gly   Val    Pro    
AGCTTGAAGAC ATT CCA GCT GTT GGT AAG GCG GCC AAG GTT CCA GGT GCA GGC GTT CCA AGAGACG 
HinD III                     Bbs I                                                                                                               BsmB I                 BamH I 

Lysine Adaptor 
               Val   Pro    Ala   Val   Gly   Lys    Val   Pro                                                      Pro 
GATCC GTT CCA GCT GTT GGT AAG GTT CCA AGAGACGGTACCCGTCT CTT CCA 
BamH I                                                           BsmB I                                                      BsmB I  
Ala   Val   Gly   Lys    Ala    Ala   Lys    Ala    Stop 
GCT GTT GGT AAG GCG GCC AAG GCG TAA 
     HinD III 
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Table A-2.  Coding sequences for DNA monomer repeat units of individual blocks of R4 

Elastin Monomer (E2)               
                              Val    Pro   Gly    Ile   Gly    Val    Pro   Gly   Ile   Gly    Val    Pro    
AGCTTGAAGAC GTT CCA GGT ATT GGC GTT CCG GGT ATC GGT GTG CCA  
HinD III                   Bbs I 
Gly   Ile     Gly     Val    Pro   Gly   Ile   Gly     Val    Pro   Gly   Ile   Gly    Val    Pro   
GGC ATC GGT GTA CCG GGT ATT GGC GTT CCA GGC ATT GGC GTT CCA AGAGACGG 
     BsmB I                   BamH I 

Plastin Monomer (P2)               
                  Ile     Pro    Ala   Val   Gly   Ile     Pro    Ala   Val   Gly    Ile    Pro    Ala   Val   Gly       

AGCTTGAAGAC ATT CCA GCT GTT GGT ATC CCA GCT GTT GGT ATC CCA GCT GTT GGC  
HinD III                    Bbs I 
Ile     Pro    Ala   Val   Gly     Ile     Pro    Ala   Val   Gly   Ile   Pro 
ATT CCG GCT GTA GGT ATC CCG GCA GTG GGC ATT CCA AGAGACGG  
BsmB I                    BamH I              

Lysine Insert (I) 
       Ile    Pro    Ala   Val   Gly    Lys    Ala   Ala    Lys   Val   Pro   Gly  Ala    Gly   Val    Pro    
AGCTTGAAGAC ATT CCA GCT GTT GGT AAG GCG GCC AAG GTT CCA GGT GCA GGC GTT CCA AGAGACG 
HinD III                     Bbs I                                                                                                               BsmB I                 BamH I 

Lysine Adaptor 
               Val   Pro    Ala   Val   Gly   Lys    Val   Pro                                                      Pro 
GATCC GTT CCA GCT GTT GGT AAG GTT CCA AGAGACGGTACCCGTCT CTT CCA 
BamH I                                                           BsmB I                                                      BsmB I  
Ala   Val   Gly   Lys    Ala    Ala   Lys    Ala    Stop 
GCT GTT GGT AAG GCG GCC AAG GCG TAA 
     HinD III     
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Electrospun Elastin and Collagen Nano-Fibers  

* Modified from Sallach RS and Chaikof EL. Electrospun Elastin and Collagen Nano-Fibers. 
Submitted as a Chapter to Handbook of Natural-based Polymers for Biomedical Applications 
 
B.1 Introduction 

Current pursuits in the discipline of biomedicine, including artificial organs and 

engineered living tissues, are dependent on the ability to generate novel materials, 

fabricate or assemble materials into appropriate 2-D or 3-D structures, and to precisely 

tailor material-related properties in order to achieve a desired clinical response [10].  To 

that end, of profound importance is the development of artificial extracellular matrices 

(ECM). These structures are integral to the fashioning of microenvironments that are 

engineered for ideal mechanical and biological performance.  It is likely this design will 

require the mimicry of many, if not all, morphological or physiologic features of native 

tissues.  Decades of research have indeed demonstrated that as our ability to control the 

physical and biological properties of scaffolding materials improves, the quality of the 

tissues thus formed is enhanced.   

More specifically, molecular and supramolecular organization of type I collagen 

and elastin fiber assemblies establishes and important paradigm for the design in the 

development of novel scaffolds.  In the body, both tissues and organs are organized into 

3-D structures, each having specific architectures, directly dependent upon its biological 

function.  This architecture is believed to foster cellular ingrowth and proliferation by 

providing appropriate channels for mass transport and spatial cellular organization, thus 

directing new tissue formation.  The use of electrospinning technology in the arena of 

biomedicine has expanded the capacity of native and recombinant proteins to be 

fabricated into artificial extracellular matrices that more closely mimic native scaffolds.  

This chapter will review efforts in the development of novel structural protein materials, 
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fabrication of nanofiber networks using electrospinning technology, and applications of 

subsequent structures in biomedicine. 

 

B.2  Electrospinning as a biomedical fabrication technology 

Tissue and organ systems can be considered in general terms as a fiber-

reinforced composite material with associated mechanical properties largely a 

consequence of protein fiber networks.  Electrospinning has been applied in this regard 

as a mechanism for generating protein nanofibers and nanofiber networks. 

  

B.2.1 The science of electrospinning 

Electrospinning is a technique which relies on electrostatic forces to produce 

nanometer to micrometer sized fibers from polymer solutions or melts.  The generation 

of fibers by electrospinning was first patented in 1934 by Anton Formhals for textile and 

polymer science [265].  It was not until 1977 that a revived interest in electrospinning 

technology emerged within the field of biomedicine for applications of wound dressings 

[266].  Traditionally, engineering plastics and conducting polymers have been 

electrospun, but recently, with emphasis on tissue engineering and microelectronics, 

electrospinning protein polymers and carbon precursors have been explored.    

Electrospinning is essentially a drawing process utilizing electrostatic interactions 

in the creation of exceptionally long fibers with uniform diameters.  This process is 

different from traditional methods of fiber formation as it is based on elongation of a 

viscoelastic jet of polymer solution or melt.  Since elongation is achieved without contact, 

as with other drawing processes, this method is optimal for the development of delicate 

nanofibers.   
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Electrospinning is a variant of the electrospraying technique.  Both involve the 

use of voltage to create a jet of polymer solution.  Electrospray involves the development 

of small droplets of low concentration solutions, a result of varicose break-up, and has 

been employed in areas such as mass spectrometry and ink jet printing.  Alternatively, 

electrospinning results in the development of a small diameter fiber from highly viscous 

solutions. Fibers with large surface to volume ratios are produced through stretching as 

a consequence of the repulsion of surface charge and evaporation of the solvent [267]. 

There are three basic components to an electrospinning apparatus; a voltage 

supply, a spinneret connected to a syringe containing the polymer solution or melt, and a 

grounded collector.  A high voltage is applied to the spinneret while the polymer solution 

is slowly being extruded.  This induces evenly dispersed charges in a pendent drop at 

the tip of the spinneret, relaxing the fluid surface.  This surface charge and the external 

Columbic forces from the electric field combine to form a tangential stress [268].  This 

causes the drop to become distorted into a shape known as a Taylor cone.  At a critical 

threshold value, the electric field strength will overcome that of surface tension and the 

polymer solution will be ejected as a charged jet from the spinneret tip.  As the jet travels 

to the grounded collector it undergoes a stretching and whipping phenomena which 

substantially reduces the diameter of this fiber.  It is then collected on the grounded 

collecting apparatus creating a randomly oriented nonwoven fiber network [267]. 

 It was initially considered that the nanometer sized fibers created by 

electrospinning were the result of splitting and splaying of the jet due to the repulsion of 

surface charges [269].  However, with high-speed photography the ability to capture 

images of jet instabilities revealed that it was rapid oscillations within the jet that were 

responsible for stretching the fibers [268].   The jet was seen to travel only a few 

centimeters in a straight path thereupon it entered into a conical envelope and was 

continuously bent and whipped into a spiraling loop.  As the perimeter of the loops 
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increased, the diameter of the jet decreased [270].  Thinning of fiber diameters as much 

as 3 orders of magnitude have been noted [271].  

 

B.2.2 Generation of nanofibers with controlled structures and morphology 

Fiber morphology and diameter of fibers generated using the electrospinning 

technique is controlled by the experimental design and dependent on both formulation 

and operation parameters.  Critical formulation parameters include solvent selection and 

protein concentration while operation parameters comprise applied voltage, gap 

distance, and flow rate.  Through the modulation of these parameters, distinct fiber 

morphologies are observed.  Many groups have investigated and optimized spinning 

conditions to produce desirable electrospun fibers.  The formation of beaded fibers has 

been a concern and as a result of investigations by Reneker and others options for 

eliminating beads have been characterized [41, 272].  Most fibers produced by optimized 

electrospinning conditions have circular cross-sections while some exhibit a ribbon-like 

morphology, a physical difference dependent on solution concentration.  For example, 

reports describing electrospinning of recombinant elastin proteins reveal solution 

concentration and flow rate to be most critical in controlling fiber morphology, as 

determined by high resolution microscopy.  At low concentrations of recombinant elastin 

protein, Lys-25, (5 wt %) short, fragmented fibers were formed with a triangle- or spindle-

shaped beaded morphology.  At higher concentrations (10 wt %) uniform fibers were 

generated with diameters ranging between 300-400 nm with little variation in morphology 

with infrequent exception of fiber splitting at triangle-shaped bifurcation points.  At 20 wt 

% a new morphological pattern was noted, defined by the emergence of flat or ribbon-

shaped fibers, which appeared twisted during deposition [41].   

Controlling the diameter of circular fibers has been widely discussed in literature.  

It has been determined that certain parameters are critical in influencing the diameter, 
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including polymer concentration, electric field strength, and flow rate.  The following plots 

summarize the experimental evidence of the relationship of electrospinning parameters 

to fiber morphology (Figure B-1) [271, 273, 274]. 
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Figure B-1. Experimental evidence summary plots of the relationship of electrospinning 
parameters to fiber morphology.  (A) Fiber diameter as a function of deposition distance 
at constant applied voltage, flow rate and protein concentration, (B) Fiber diameter as a 
function of applied voltage at constant flow rate, depositon distance, and protein 
concentration, (C) fiber diameter as a function of flow rate at constant applied voltage, 
deposition distance, and protein concentration, (D) Fiber diameter as a function of 
protein concentration at constant applied voltage, deposition distance, and flow rate.   
(adapted from Bowlin, VCU, http://www.egr.vcu.edu/bme/faculty/bme-bowlin.html) 
 

 

B.3 Generation of collagen and elastin small diameter fibers and fiber networks 

It is as integrated fiber networks that collagen and elastin constitute the 

fundamental structural elements of tissue. Thus, whether matrix proteins are produced 
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synthetically or extracted from native tissue, it is likely that their versatility as scaffolds 

for tissue engineering applications will be significantly enhanced when reformulated into 

fiber networks. 

 

B.3.1 Native collagen and biological function 

As a principle constituent of the extracellular matrix, collagen is ubiquitously 

present in all connective tissues. The most abundant form of collagen isolated from adult 

connective tissues, such as skin, tendon, and bone, is type I collagen. Characteristically, 

it is composed of two α 1(I) chains and one α 2(I) chain, each slightly more than 1000 

amino acids long, and organized as a triple helix and stabilized primarily by hydrogen 

bonds [275].  A single molecule of type I collagen has a molecular mass of 285 kDa, a 

width of ~14 Å, and a length of ~3000 Å. In native connective tissues, type I collagen 

molecules form fibrillar elements twenty to several hundred nanometers in diameter that 

are organized into protein networks of varying architecture. Functionally, collagen fiber 

networks act to resist high strain deformation and in the process transmit forces, 

dissipate energy, and prevent premature tissue mechanical failure [276]. 

Collagen’s tensile strength, its stability in a biological environment, and its 

capacity to present specific ligands for cell surface receptors are properties that are in 

large measure dependent on the integrity of collagen’s characteristic triple-helical 

conformation [275, 277-279]. For example, the energy requirement for collagen 

degradation by collagenase I (MMP-1) is reduced by a factor of two if native fibrillar 

(multimeric) collagen is in a monomeric form, but by a factor of ten if the triple helix is 

denatured [280]. Thus, while the self-assembly of monomeric collagen into an ordered 

supramolecular system is an important physiologic mechanism for fibril formation, the 

uniquely coiled-coil triple helix is the dominant structural feature.  This structure dictates 

collagen stability and defines its mechanical properties. Consequently, the generation of 
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a robust load-bearing fiber network with appropriate mechanical integrity and biological 

function mandates maximal preservation of the collagen triple helix during the process of 

fiber formation. 

 

B.3.2 Collagen as a biomaterial 

Collagen is a biodegradable, biocompatible, and non-immunogenic structural 

protein, which makes it a suitable component for a variety of biomedical applications.  As 

a biomaterial, collagen has been predominantly used after processing into a dry powder 

or slurry, a hydrogel after solution phase cross-linking, or as a porous matrix with or 

without the addition of other components after freeze-drying [281]. For example, 

collagen has been used in cosmetic and urological surgery as an injectable compound 

for tissue augmentation [282]; in orthopedic surgery as an implantable matrix to promote 

bone growth [283-285]; and in plastic and general surgery as a topical agent for the 

treatment of both chronic non-healing wounds and burn injuries or as a template for 

tissue regeneration [286, 287].  However, it is as a native protein network that the 

versatility of collagen as scaffolding material could have the most profound impact in the 

area of tissue engineering.  Notably, collagen fiber networks constitute the principle 

structural elements of a variety of acellular bioprosthetic tissue substitutes, such as 

porcine heart valves and bovine artery heterografts, as well as other tissue derived 

matrices, including porcine subintestinal submucosa and bovine pericardium.  

 

B.3.3 Electrospun collagen nanofibers 

The production of collagen fibers has been reported, and has traditionally relied 

upon wet spinning processes that involve the extrusion of a protein solution through a 

spinneret into an acid-salt coagulating bath, which usually contains aqueous ammonium 

sulfate, acetic acid, isopropanol, or acetone. Further treatments in ethanol and acetone 
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solutions are often required for fiber dehydration. For example, Hirano et al. [288] 

described the production of chitosan-collagen fibers (d > 30 µm) produced by wet 

spinning from an aqueous acetic acid-methanol solution into an ammonia solution 

containing 40-43% ammonium sulfate. Likewise, Fofonoff and Bell [289] have reported a 

method for forming collagen fibers (d > 100 µm) by wet spinning from an aqueous acetic 

acid solution into a heated coagulating bath containing alkaline alginic or boric acid. The 

collagen fiber is formed by polymerization when the acid in the collagen is neutralized 

upon contact with the neutralizing solution and the fibers are subsequently dehydrated in 

acetone and ethanol baths. An additional example is provided by Furukawa et al. [290] 

in which solubilized collagen is spun into a coagulating bath containing an inorganic salt, 

such as sodium, aluminum, or ammonium sulfate.   Nonetheless, limitations of these 

approaches are recognized, including: (i) the use of conditions which likely induce 

significant conformational changes in native protein structure, including protein 

denaturation; (ii) the generation of fibers that range from tens to hundreds of microns in 

diameter and are much larger than those observed in native tissues [291-293]; and (iii) a 

reliance on biologically toxic solvent systems.  Although research in the area of wet 

spinning collagen has advanced and significant improvements have been achieved, an 

alternate approach for submicron collagen fiber formation, electrospinning, has recently 

been investigated [42, 45, 256, 294-297]. The architecture generated from this process 

is similar to that found in most native extracellular matrices, thus underscoring the 

electrospinning technique for design of novel scaffolds.   

The first report of electrospun collagen fibers employed a weak acid solution to 

electrospin type I collagen-polyethylene oxide (PEO) blends at ambient temperature and 

pressure.  High resolution microscopy was employed to resolve the influence of critical 

electrospinning parameters, specifically, solution viscosity, conductivity, and flow rate on 

subsequent fiber ultrastructure and size.  A variety of fiber microstructures were 
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observed: beaded, round, and ribbon-like filaments.  Ultimately, fibers of uniform 

morphology and ultrastructure, with average diameters of 100-150 nm, were generated.  

Significantly, this procedure outlined a non-toxic and non-denaturing approach for the 

generation of collagen containing nanofibers and nonwoven fiber networks (Figure B-2) 

[256].   

 

Figure B-2. SEM micrographs of PEO-collagen blended fibers spun from 2 wt% acid 
solution (34 mM NaCl) at a flow rate of 100 µl min-1 and at different collagen–PEO 
weight ratios: (A) 30 : 1, 50 000x magnification, (B) 10 : 1, 50 000x magnification (C) 5 : 
1, 50 000x magnification, (D) 2: 1, 50 000x magnification, (E) 1 : 1, 20 000x 
magnification, (F) 1 : 2, 50 000x magnification.  Fibers of uniform morphology and 
ultrastructure, with average diameters of 100-150 nm, were generated (adapted from 
[256]). 
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Similarly, other approaches have investigated various collagen sources and 

isotypes in the production of collagen nanofibers.  Typically, acid soluble type I collagen 

from rat tail tendons or calf skin have been utilized.  Type I and Type III collagen from 

human placenta has also been investigated [294]. Results indicate that identity and 

source of collagen are significant to the morphological, mechanical, and biological 

properties of the electrospun collagen networks. Additionally, solvent such as HFIP 

(1,1,1,3,3,3 hexafluoro-2-propanol)  have been used for electrospinning  of collagen.  

While some investigators have claimed preservation of native collagen structure, studies 

in our own laboratory demonstrate complete loss of triple helical structure when 

examined by circular dichroism spectroscopy, differential scanning calorimetry, or x-ray 

diffraction  [256, 297, 298]. 

 

B.3.4 Biological role of elastin 

Native elastin is a highly insoluble matrix protein which functions to provide 

extensibility and resilience to most tissues of the body. Elastin networks are responsible 

for maximizing the durability of tissues that are loaded by repetitive forces by minimizing 

the conversion of mechanical energy to heat which ultimately results in tissue damage 

[52]. In addition to the structural role, elastin creates an environment, which promotes 

proper cell function and modulates cellular attachment, growth, and responses to 

mechanical stimuli.   

Elastin fibers appear to exist as two morphologically different components, a 

highly isotropic amorphous elastin constituent within an organized microfibrilar scaffold 

[69]. Understanding of the mechanism of fiber assembly in native elastin is limited; 

however, it appears to take place in proximity to the cell membrane where microfibrils 

emerge as fiber bundles. Amorphous elastin is synthesized by smooth muscle cells as a 

soluble monomer, the 72 kDa precursor tropoelastin, and is secreted within each fiber 
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bundle. Reminiscent of natural rubber, it is organized into insoluble networks reminiscent 

through enzymatic crosslinking via oxidation by lysyl oxidase [71]. 

The distinctive composition of tropoelastin affords unique physical properties of 

this structural protein. Tropoelastin is rich in glycine (33%), proline (10-13%), and other 

hydrophobic residues (44%) rendering elastin an extremely hydrophobic protein [61].  

Tropoelastin contains distinct crosslinking and hydrophobic domains. Crosslinking 

domains are alanine rich, containing pairs of lysine residues thereby facilitating 

intermolecular crosslinking.  Alternatively, the hydrophobic domains within tropoelastin 

are composed of three-quarters valine, glycine, proline, and alanine. Investigations have 

elucidated that the precise sequence and size of this region are not critical for 

appropriate function; however, the total size of the protein polymer, 750-800 residues, is 

highly conserved among species [62]. 

 

B.3.5 Elastin as a Biomaterial 

 A failure of current acellular bioprostheses is the inability to exhibit mechanical 

properties that match those of native tissues, primarily a result of the loss or degradation 

of the elastin protein networks, thereby reinforcing the importance of elastin fiber 

networks is bioprosthetic design.  Isolated elastin matrices from acellular allo- and 

xenogenic tissues have been investigated as scaffolding materials with these studies 

confirming that native protein fiber networks can be used to fabricate an artificial 

scaffold.  However, these scaffolds often require the addition of structural proteins or 

must be seeded with cells to demonstrate proper biochemical and biomechanical 

function [40, 299].   Despite successes, recognized drawbacks, including tissue 

heterogeneity, incomplete cell extraction, the generation of ill-defined chemical 

crosslinks, progressive biodegradation, and the potential risk of viral transmission from 

animal tissue, continue to dampen enthusiasm for this approach. As a promising 
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alternative in the generation of biomimetic scaffolds, soluble elastin, derived either as 

fragmented elastin, in the form of alpha- or kappa-elastin, or as the natural monomer 

tropoelastin [42], have been successfully electrospun.  Additionally, through genetic 

engineering of synthetic polypeptides, novel elastin proteins have been created for such 

applications.  Utilizing these strategies affords the ability to tailor matrix composition and 

content, fiber size and architecture, or other features that may influence 3-D hierarchical 

tissue structure, thus enabling the ability to design a scaffold with precisely defined 

mechanical and biological properties. 

 

B.3.6 Recombinant elastin technologies 

It has been postulated that the generation of protein polymers that mimic native 

structural proteins and the assembly of these recombinant proteins either alone or in 

combination with naturally occurring matrix proteins provides an opportunity to optimize 

the mechanical properties of artificial tissues.  In this way, recombinant technologies 

have been pursued in the generation of elastin-mimetic protein polymers.  Through the 

structural characterization of the hydrophobic domains, the ability to base synthetic 

protein polymers on native elastin sequences is feasible. The pioneering work of Urry 

elucidated the elastomeric pentapeptide repeat, VPGVG, from human elastin, which now 

serves as the fundamental sequence extensively investigated by both chemical 

methodologies and recombinant technology [79, 80].  VPGVG is a common repeat unit 

within the hydrophobic domain of human elastin and is responsible for resultant elastic 

properties. Additionally, this domain is responsible for facilitating fiber formation through 

coacervation phenomena, behaviors consistent with native elastin. Spectroscopic 

analysis has revealed that native elastin, and likewise, protein polymers containing this 

repeat, exhibit β-turns and helical β- spiral conformations and display an inverse 

temperature transition defined by the generation of a more ordered system upon 
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increasing temperature.  This loss of entropy is a consequence of protein folding into β -

spiral conformation and the subsequent reorientation of water from the elastin chain [81].  

Studies have elucidated the amino acid in the fourth (X) position (VPGXG) modulates 

the coacervation temperature with more polar amino acids increasing transition 

temperature [66, 67, 83]. Preservation of the glycine and proline residues maintain the 

structure and function of elastin analogs [83]. This discovery has led to the generation of 

recombinant elastin analogs designed for biomedical applications. For instance, this 

technology has been employed in the design of amphiphilic elastin protein polymers 

consisting of hydrophobic and hydrophilic domains. Through precise sequence design 

and control of processing conditions, these elastin analogs exhibit a wide range of 

properties advantageous for biomedical applications, as micelles, physically crosslinked 

hydrogels, or nanofiber networks [1-3, 5, 83]. Additionally, groups have incorporated cell 

binding domains, RGD or REDV, into elastin sequences to functionalize elastin matrix 

components for endothelial cell attachment [85, 86].  Genetic engineering strategies 

afford the ability to modulate macroscopic properties on the molecular level. Therefore 

the potential exists to generate synthetic polypeptides that mimic native proteins.  In this 

regard, there is an inherent opportunity to precisely engineer recombinant sequences to 

targeted design criteria such as tensile strength, elastic modulus, viscoelasticity, and in 

vivo stability, as well as the optimization of a desired host response.   

 

B.3.7 Generation of elastin and elastin-mimetic small diameter fibers and fiber 
networks 
As material for tissue engineering applications, elastin is intended to provide both 

mechanical support and potentially act as a scaffold for cellular repopulation. As such, it 

is likely when reformulated into fiber networks that the versatility of elastin as a 

scaffolding material will be significantly improved. In this regard, electrospinning has 
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been investigated as a mechanism for generating fibers with diameters < 1 µm.  When 

proteins are reformulated as fiber systems desired mechanical and biological properties 

can be achieved for biomedical applications. For instance, flexibility of a fibrous system 

can be controlled by either a decrease in fiber diameter or an increase in fiber number 

[300]. Thus, reformulating elastin proteins into fiber networks provides an additional level 

of control over the properties of the artificial matrix designed. Specifically, studies have 

indicated electrospun fabrics composed of small diameter fibers (<1µm) were found to 

have decreased porosity, increased fiber density, increased mechanical strength, as well 

as an optimized biological environment for promoting cell adhesion as compared to 

larger diameter fibers (7µm) [42, 47] 

Previous reports have demonstrated the feasibility of electrospinning soluble 

elastin as a single component system as well as in collagen-elastin blends.  

Concentrated solutions of soluble elastin produced fibers with average diameters from 

ranging from 100 nm to 3 µm have been generated with fiber diameter being highly 

dependent upon solvent systems utilized [42, 45, 46, 297].  Additionally, collagen-elastin 

blends produced fibers with diameters ranging from nanometers to micrometers [297, 

301].  Subsequent work has endeavored to improve the mechanical properties, 

specifically the compliance and mechanical strength of these elastin based matrices, 

through the addition of synthetic polymeric materials such as PLGA, poly (D,L-lactide-co-

glycolide).  Notably, compliance testing of collagen-elastin-PLGA electrospun scaffolds 

demonstrated behavior consistent with in vivo mechanical behavior of bovine arteries.  

Specifically, controlling the ratio of collagen, elastin, and PLGA facilitated the modulation 

of electrospinning characteristics as well as the strength and stability of the electrospun 

scaffold, as a burst pressure of nearly 12 times normal systolic pressure was observed 

[295]. 
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Recently, attempts to electrospun human tropoelastin have been undertaken.  

Interestingly, electrospinning of these materials produced ribbon-shaped fibers, several 

microns in diameter, which appeared to retain a unique periodicity, controlled by 

modulating the solution flow rate.  Morphology of these fibers is reminiscent of the 

topology of elastin in native tissues, for instance, the architecture of the elastic lamina 

within blood vessels [42]. 

Notwithstanding reports with promising results, important limitations remain 

associated with native elastin electrospinning strategies.   In consideration, significant 

investigation in the design of recombinant elastin proteins, microbial expression of these 

proteins, and reformulation into protein fiber networks by means of electrospinning has 

been explored.  The first report of fiber formation from an elastin-like analog was 

described utilizing a 81 kDa recombinant elastin peptide polymer, Lys-25, comprised of 

the repeat sequence (Val-Pro-Gly-Val-Gly)4(Val-Pro-Gly-Lys-Gly).  Electrospinning of a 

15-wt% solution afforded a fabric with a unimodal distribution of fiber diameters (Figure 

B-3). Moreover, in the absence of high rotational or translational speeds on a collecting 

mandrel, fiber orientation was random. Interestingly, pulsed field gradient NMR 

spectroscopy was utilized to access network porosity and pore size distribution in 3-D 

fabrics and revealed Lys-25 electrospun matrices as physiologically ideal for cellular 

seeding in that regard (Fig 4)  [41, 103].  While a number of elastin-mimetic protein 

polymers can be fabricated as fibers and covalently crosslinked, a family of recombinant 

elastin triblock copolymers containing chemically distinct midblocks have been 

investigated in the generation of virtually crosslinked fibers and fiber networks.  

Specifically, these studies demonstrate that self-assembling triblock elastin analogues 

have the capacity to form stable fibers, but without a requirement for chemical 

crosslinking [1]. As an example, electrospinning was used to produce tubular conduits 

from a triblock copolymer.  Mechanical properties were assessed in PBS at 37°C. 
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Hydrated samples displayed an elastic modulus of 0.29 ± 0.03 MPa, a strain to failure of 

151 ± 29%; values comparable to the elastin component of the arterial wall (Young’s 

modulus ~ 0.3 MPa) [30, 302]. 

 

 

 

Figure B-3.  First reported fiber formation from an elastin-like analog utilizing a 81 kDa 
recombinant elastin peptide polymer.  SEM micrographs of elastin-mimetic peptide fibers 
spun from 15 wt % solution at 50 (A), 100 (B), 150 (C), and 200 µl min-1 (D) flow rate.  
Electrospinning of a 15-wt% solution afforded a fabric with a unimodal distribution of 
fiber diameters (adapted from [41]). 
 

B.4 Generation of crosslinked fibers and fiber networks 

It is generally understood that crosslinking is necessary for the maintenance of 

biostability in engineered collagen and elastin scaffolds.  In native tissues, lysyl oxidase, 

a specific amine oxidase, catalyzes the formation of aldehyde cross-link intermediates in 
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the solid state providing intermolecular crosslinking within collagen and elastin networks. 

Presumably, the incorporation of various degrees of crosslinking can be used to further 

tailor and control the material properties of the scaffold to specific applications.   

 

B.4.1 Crosslinking collagen networks 

Glutaraldehyde is the traditional crosslinking agent for bioartificial devices.  While 

it has been shown to enhance stability and further reduce immunogenicity, it does exhibit 

potential cytotoxicity and late induction of collagen calcification.  Therefore, alternative 

crosslinking approaches have been reported, including chemical (carboiimide, 

diisocyanates, and polypoxy compounds) and solid state photocrosslinking.  For 

example, Chaikof and colleagues described the derivitization of type I collagen with 

methacrylate groups [103, 303] and cinnamate groups for photocrosslinking [304] while 

preserving collagen’s triple helical structure.  

 

B.4.2 Crosslinking elastin networks 

Crosslinking of native elastin, as well as synthetic elastin-mimetic protein 

polymers has most often been investigated using solution phase systems; either gamma 

irradiation [88, 90], chemical [95-97, 103], or enzymatic based approaches [305], as well 

as solid state photocrosslinking [303]. Nevertheless, for most biomedical applications of 

synthetic scaffolds, vapor phase glutaraldehyde crosslinking is currently the system 

utilized, with successful in vitro and in vivo biocompatibility results.  Directed efforts in 

alternative chemical crosslinking strategies, in which no additional chemical entities are 

introduced and stable amide linkages are formed, have also been investigated.  For 

example, mixed solutions of EDC (N-(3-dimethylaminopropyl)-N’-ethylcarboiimide 

hydrochloride) and NHS (N-hydroxysuccinimide) were employed to crosslink electrospun 

collagen-elastin scaffolds with no apparent alteration to fiber morphology as determined 
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my microscopy analysis.  Scaffold stability and biocompatibility was assessed in vitro 

through cell seeding of smooth muscle cells with promising results [297]. 

Alternatively, incorporation of reactive lysine residues into recombinant elastin 

design provides the ε-amino moiety of lysine for crosslinking using a variety of 

approaches. This strategy affords the ability to achieve precise control over the nature 

and degree of crosslinking, and facilitates spatial and temporal control over the reaction 

process.  Specific investigations into reactive group spacing as well as crosslinking 

strategies on the modulation of important biological behaviors of elastin analogs has 

been conducted with the general conclusion that the placement of well defined 

crosslinks enhance the biostability of elastin and improve biologically relevant properties.  

For example, methacrylate groups were incorporated into the protein polymer backbone 

in order to facilitate site-specific solid-state photocrosslinking using either UV or visible 

light activated photoinitiators [103]. Mechanical analysis confirmed superior biologically 

relevant behaviors comparable to the elastic behavior comparable to native elastin.  

Significantly, in response to deleterious effects of chemical crosslinking reagents, 

a new class of recombinant proteins have been investigated, self-assembling triblock 

elastin copolymers, which have the capacity to form stable fibers, but without a 

requirement for chemical crosslinking [1-3].   Due to the nature of the copolymer design, 

they form physically or virtually crosslinked systems.  Notably, nanofiber formation was 

influenced by solvent conditions with nanofibers in the diameter range of 100-400 nm 

generated utilizing a solvent which identically solvates both blocks of the copolymer 

while nanofibers with diameter ranging from 800 nm-3 µm generated from an aqueous 

solution which preferentially solvates only the midblock.  Subsequent mechanical 

evaluation indicates that modulation of elastic and plastic behavior of the triblock protein 

is directly dependent on the solvent systems used in fabrication.  In particular, 

mechanical evaluation of the triblock elastin protein fibers under physiological conditions 
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revealed elastic modulus and ultimate tensile strength comparable to that of native 

tissues such as the elastin component of the arterial wall (Young’s modulus ~ 0.3 MPa) 

[30, 302].   

 

B.5 Multicomponent electrospun assemblies 

It is likely that the molecular structure and supramolecular organization of 

collagen and elastin fiber assemblies within native tissues establishes an important 

paradigm for the design of a biomimetic scaffold.  Therefore, the hierarchal assembly of 

these protein fiber networks is essential for generating constructs with both enhanced 

biostability and blood contactability, as well as mechanical properties that closely match 

those of the native tissue.  As such, the potential of electrospinning multicomponent 

systems in the design of biomimetic scaffolds is substantial since it affords an additional 

level of control in vitro to recreate native architectures.      

In this regard, two electrospinning techniques have been employed to create 

nanofibrous bicomposites, multilayering electrospinning and multicomponent (mixing) 

electrospinning [306].  Multilayering electrospinning requires sequential deposition of two 

unique materials onto the same collector, such that a hierarchal ordered structure is 

obtained.  This method has been employed to fabricate constructs composed of 

synthetic polymers lined with biocompatible native proteins such as collagen, fibrin and 

laminin. 

As an alternate technique, mixing electrospinning, in which two unique materials 

are simultaneously electrospun from different syringes, ultimately yields a fiber network 

of mixed identity.  This method is of particular interest in creating tubular constructs for 

tissue engineering of blood vessels.  For instance, a bilayered construct can be 

engineered with an outer layer of circumferentially oriented fibers mimicking the tunica 

media and an inner layer of randomly oriented fibers acting as the elastic lamina of the 
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blood vessel [307].  This method has also been employed to modulate porosity and 

microvoid spaces within an electrospun scaffold through fiber-leaching.  Several such 

studies involving simultaneous spinning of PEO and other synthetic or natural polymers, 

followed by dissolution of the PEO component in water have been investigated in the 

modulation of scaffold architecture [256, 306]. 

Additionally, blended solutions have been investigated, specifically collagen-

elastin blends, which yield a fiber matrix in which singular components are 

indistinguishable.  These types of matrices have exhibited enhanced mechanical and 

biological behaviors compared to matrices composed of the individual components [45, 

46].  Collagen-glycosaminoglycan scaffolds have also been electrospun from blended 

solutions with a pore structure (mean diameter of 260 nm) similar to that found in native 

matrices. Upon vapor phase crosslinking, these scaffolds exhibited biostability and 

resistance to collagenases along with increased cellular proliferation when seeded with 

cells [295]. 

 

B.6 Electrospun nanofiber networks and the potential for the incorporation of 
living cells 

 
  Both collagen and elastin matrix proteins provide a useful physiological starting 

point for the creation of a biochemical and biomechanical environment that is optimized 

for enhanced cell adhesion, migration, proliferation, and differentiation.  Fabrication of 

these proteins into nanofiber networks provide the  potential to incorporate various cell 

types; endothelial cells, SMC, fibroblasts, stem cells, chondrocytes, osteoblasts, human 

or animal cells which have been genetically engineered to produce a protein of interest 

(eg, growth factor, peptide hormone, antiangiogenic protein). 

In vitro investigations indicate the architecture of electrospun networks supports 

mass transport and spatial cellular organization.  Specifically, as a consequence of the 
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fiber nano-dimensions, the surface-to-volume ratio, and the unique three-dimensional 

architecture within these electrospun matrices, movement of signaling molecules, 

nutrients, and metabolic waste is likely enhanced and cell-cell and cell-matrix 

interactions are facilitated [308].  Specifically, collagen and elastin scaffolds have been 

shown to promote cell adhesion, migration and proliferation of a variety of cell types in 

vitro, with promising results concerning biocompatibility and biostability. 

 

B.7 Future Trends: Biomedical applications for electrospun collagen and 
elastin nanofiber networks 

 
There is a long felt need for durable materials for medical and veterinary use in 

organ and tissue substitutes.  Such materials must be compatible with human and 

animal physiologies such that thromboses, inflammation and other harmful physiological 

reactions are not induced.  Furthermore, durable and biologically compatible materials 

which do not require lengthy preconditioning periods prior to implantation are required. 

Over the past decade, considerable effort has been directed towards developing 

scaffolds using both synthetic and natural polymers.  As the majority of human tissues 

and organs originate from hierarchically organized fibrous structures, electrospinning 

fiber networks is of particular interest in the development of these unique matrices.  

Importantly, scaffold geometry can be modulated for a variety of tissue engineering 

applications, simply by the shape of the collector, such that seamless and complex 

scaffold geometries can be fabricated.  Additionally, from a commercial distribution 

perspective, the electrospinning technique is a rapid and efficient technology which can 

easily be conducted utilizing a sterile technique to generate a material which will likely 

have a long shelf life. 

The many diverse areas of research in which electrospinning is being employed 

within biomedicine underscores the range of applications for which this technology can 
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be utilized.  These matrices not only mimic native ECM architecture, which ultimately 

reproduce native mechanical and biological performance, but also provide the 

opportunity to further tailor biological responses.   Additionally, the electrospinning 

technique provides enormous flexibility to tissue engineering of biocompatible matrices 

for a variety of applications.  These matrices have potential in drug delivery [304], 

vascular bioengineering of blood vessels and heart valves [44, 309], hard and soft tissue 

reconstruction, load bearing prosthetic materials, materials to facilitate wound closing 

and/or healing and stem cell delivery [310].  
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